Previously, we investigated gene expression in a high aldehyde dehydrogenase 1 expression (ALDH1) population of urothelial carcinoma (UC) cells as UC cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) and found that NRG1 expression was upregulated in ALDH1 cells. NRG1 is a trophic factor that contains an epidermal growth factor (EGF)-like domain that signals by stimulating ERBB receptor tyrosine kinases and the cytoplasmic domain. NRG1 has been determined to be involved in frequent gene fusions with other partners in several malignancies and has a role in carcinogenesis through the NRG1 EGF-like domain and its cognitive receptor ERBBs. We thus aimed to elucidate the function of NRG1 in UC CSCs/CICs in this study. Both NRG1α and NRG1-β1 were preferentially expressed in ALDH1 cells compared with ALDH1 cells; however, siRNA experiments revealed that NRG1-β1 but not NRG1-α has a role in sphere formation. The EGF-like domain of NRG1 had a role in sphere formation of UC cells to some extent but was not essential. The intracellular domain of NRG1 did not have a role in sphere-formation. Inhibition of γ-secretase suppressed sphere formation. These findings indicate that cleavage of NRG1-β1 by γ-secretase plays an important role in UC CSC/CIC proliferation; however, the downstream targets of NRG1-β1 remain elusive.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.03.038DOI Listing

Publication Analysis

Top Keywords

aldh1 cells
12
egf-like domain
12
domain nrg1
12
sphere formation
12
role sphere-formation
8
urothelial carcinoma
8
cancer stem-like
8
cells
8
stem-like cells
8
role sphere
8

Similar Publications

Retinoic acid signaling pathway plays a role in regulating vertebrate development, cell differentiation, and homeostasis. As a key enzyme that catalyzes the oxidation of retinal to retinoic acid, aldehyde dehydrogenase 1 family member A2 (Aldh1a2) is involved in cardiac development, while whether it functions in heart diseases remains to be studied. In this study, we infected primary cardiomyocytes with adenovirus overexpressing (Ad-Aldh1a2) to explore the effects of overexpression on the biological function of cardiomyocytes.

View Article and Find Full Text PDF

Cervical carcinoma has the highest incidence among gynaecological cancers in developing countries where the human papillomavirus (HPV) vaccine is not yet widely used. Cancer stem cells (CSCs) are the key factors affecting treatment efficacy and cancer prognosis. Aldehyde dehydrogenase 1 (ALDH1) is a marker of CSCs, and its expression is closely related to chemotherapy resistance in cervical carcinoma.

View Article and Find Full Text PDF

Embryoid body-based differentiation of human-induced pluripotent stem cells into cells with a corneal stromal keratocyte phenotype.

BMJ Open Ophthalmol

November 2024

Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China

Objective: The transparency of the cornea is determined by the extracellular matrix, which is secreted by corneal stromal keratocytes (CSKs). Human-induced pluripotent stem cell (hiPSC)-derived keratocytes (hiPSC-CSKs) can be used in cell-based therapy for treating corneal blindness. Our goal was to develop an effective small molecule-based technique for differentiating hiPSCs into keratocytes.

View Article and Find Full Text PDF

Aldehyde dehydrogenase-1A1 (ALDH1A1), a member of a superfamily of 19 isozymes, exhibits various biological functions and is involved in several important physiological and pathological processes, including those associated with various diseases including cancers such as pancreatic cancer. Chemotherapy is one of the most important strategies for the treatment of pancreatic cancer; however, the chemoresistance exhibited by pancreatic cancer cells is a leading cause of chemotherapy failure. It has been reported that overexpression of ALDH1A1 significantly correlates with poor prognosis and tumor aggressiveness, and is clinically associated with chemoresistance.

View Article and Find Full Text PDF

Liver ischemia-reperfusion (I/R) injury is a clinically relevant pathophysiological process that determines the effectiveness of life-saving liver transplantation, to which aberrant ROS accumulation plays a key role. In the present study we investigated the role of SUV39H1, a lysine methyltransferases, in this process focusing on regulatory mechanism and translational potential. We report that SUV39H1 expression was up-regulated in the liver tissues of mice subjected to ischemia-reperfusion and in hepatocytes exposed to hypoxia-reoxygenation (H/R) in a redox-sensitive manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!