Soluble microbial products (SMP) classified as utilization-associated products (UAP) and biomass-associated products (BAP) are the predominant foulants determining fouling in tertiary filtration. However, the exact mechanisms of BAP and UAP generation when treating real wastewaters under cold temperatures remain unrevealed. This paper presents the first study linking biological processes and SMP formation when treating real wastewaters through a combination of bioprocess modelling and advanced SMP characterization. Further, the impact of low operating temperatures on SMP production which has received relatively little attention was studied in detail. The use of liquid chromatography-organic carbon detection (LC-OCD) revealed a significant increase in protein and polysaccharide concentrations in the treated effluents as temperature decreased with a more sensitive impact on polysaccharides. The generation of SMP from biomass decay (BAP) and substrate utilization (UAP) was derived from the LC-OCD data on the basis of protein and polysaccharide mass balances. UAP and BAP yields were estimated as the ratios of the observed generation rates to the rates of substrate utilization and endogenous decay respectively, which both declined as temperature increased. A strong correlation was observed between temperature and BAP/UAP yields whereas the generation of BAP was more temperature sensitive than UAP. Such process modelling can be employed to assist with the optimization of the design and operation of membrane processes when treating wastewaters under challenging conditions like low temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146471DOI Listing

Publication Analysis

Top Keywords

soluble microbial
8
microbial products
8
treating real
8
real wastewaters
8
protein polysaccharide
8
substrate utilization
8
temperature
6
smp
5
uap
5
bap
5

Similar Publications

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

The present study investigates the natural ability of Bacillus velezensis R22 to produce 2,3-BD from two inulin-rich substrates - insoluble and soluble chicory flour. After complex optimization of the media content and process parameters by consecutive application of Plackett-Burman design and response surface methodology, the strain R22 was capable of producing 71.2 g/L (95.

View Article and Find Full Text PDF

The intestinal microbiota is widely recognized as an integral factor in host health, metabolism, and immunity. In this study, the impact of dietary fiber sources on the intestinal microbiota and the production of short-chain fatty acids (SCFAs) was evaluated in Lohmann White laying hens. The hens were divided into four treatment groups: a control diet without fiber, a diet with wheat bran (mixed fibers), a diet with insoluble fiber (cellulose), and a diet with soluble fiber (pectin), with six replicates of four hens each.

View Article and Find Full Text PDF

Evaluation of Intestinal Permeability Using Serum Biomarkers in Learning Early About Peanut Allergy Trial.

Allergy

January 2025

Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, USA.

Background: Intestinal barrier dysfunction may lead to a break in tolerance and development of food allergy (FA). There is contradictory evidence on whether intestinal permeability (IP) is altered in IgE-mediated FA. Thus, we sought to determine whether IP differed between children with eczema who did (FA group) or did not (atopic controls, ACs) develop FA and whether peanut sensitization, allergy, and early introduction impacted IP using serum biomarkers zonulin, soluble CD14, and Intestinal Fatty Acid Binding Protein among randomly selected participants enrolled in the Learning Early About Peanut allergy trial.

View Article and Find Full Text PDF

Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!