A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stabilization mechanism of amorphous carbamazepine by transglycosylated rutin, a non-polymeric amorphous additive with a high glass transition temperature. | LitMetric

α-Glycosyl rutin (Rutin-G), composed of a flavonol skeleton and sugar groups, is a promising non-polymeric additive for stabilizing amorphous drug formulations. In this study, the mechanism of the stabilization of the amorphous state of carbamazepine (CBZ) by Rutin-G was investigated. In comparison with hypromellose (HPMC), which is commonly used as a crystallization inhibitor for amorphous drugs, Rutin-G significantly stabilized amorphous CBZ. Moreover, the dissolution rate and the resultant supersaturation level of CBZ were significantly improved in the CBZ/Rutin-G spray-dried samples (SPDs) owing to the rapid dissolution property of Rutin-G. Differential scanning calorimetry measurement demonstrated a high glass transition temperature (T) of 186.4°C corresponding to Rutin-G. The CBZ/Rutin-G SPDs with CBZ weight ratios up to 80% showed single glass transitions, indicating the homogeneity of CBZ and Rutin-G. A solid-state NMR experiment using C- and N-labeled CBZ demonstrated the interaction between the flavonol skeleton of Rutin-G and the amide group of CBZ. A H-C two-dimensional heteronuclear correlation NMR experiment and quantum mechanical calculations confirmed the presence of a possible hydrogen bond between the amino proton in CBZ and the carbonyl oxygen in the flavonol skeleton of Rutin-G. This specific hydrogen bond could contribute to the strong interaction between CBZ and Rutin-G, resulting in the high stability of amorphous CBZ in the CBZ/Rutin-G SPD. Hence, Rutin-G, a non-polymeric amorphous additive with high T, high miscibility with drugs, and rapid and pH-independent dissolution properties could be useful in the preparation of amorphous formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120491DOI Listing

Publication Analysis

Top Keywords

flavonol skeleton
12
cbz rutin-g
12
rutin-g
10
cbz
10
amorphous
9
non-polymeric amorphous
8
amorphous additive
8
additive high
8
high glass
8
glass transition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!