Thrombopoietic effects of CCAAT/enhancer-binding protein β on the early-stage differentiation of megakaryocytes.

Arch Biochem Biophys

Air Force Medical University, Xi'an, China; Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China. Electronic address:

Published: May 2021

CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor that is involved in adipocytic and monocytic differentiation. However, the physiological role of C/EBPβ in megakaryocytes (MKs) is not clear. In this study, we investigated the effects of C/EBPβ on the early-stage differentiation of MKs, and explored the potential mechanisms of action. We established a cytosine arabinoside-induced thrombocytopenia mouse model using C57BL/6 mice. In the thrombocytopenia mice, the platelet count was found to be decreased, and the mRNA and protein expression levels of C/EBPβ in MKs were also reduced. Furthermore, the maturation of Dami (MKs cell line) cells was induced by phorbol 12-myristate 13-acetate. When C/EBPβ was silenced in Dami cells by transfection using C/EBPβ-small interfering RNA, the expression of MKs-specific markers CD41 and CD62P, was dramatically decreased, resulting in morphological changes and differentiation retardation in low ploidy, which were evaluated using flow cytometry, real-time polymerase chain reaction, western blot, and confocal microscopy. The mitogen activated protein kinase-extracellular signal-regulated kinase signaling pathway was found to be required for the differentiation of MKs; knockdown of C/EBPβ in MEK/ERK1/2 pathway attenuated MKs differentiation. Overexpression of C/EBPβ in MEK/ERK1/2 pathway inhibited by U0126 did not promote MKs differentiation. To the best of our knowledge, C/EBPβ plays an important role in MKs differentiation and polyploidy cell cycle control. Taken together, C/EBPβ may have thrombopoietic effects in the differentiation of MKs, and may assist in the development of treatments for various disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2021.108846DOI Listing

Publication Analysis

Top Keywords

differentiation mks
12
mks differentiation
12
differentiation
9
c/ebpβ
9
mks
9
thrombopoietic effects
8
ccaat/enhancer-binding protein
8
early-stage differentiation
8
c/ebpβ mek/erk1/2
8
mek/erk1/2 pathway
8

Similar Publications

Beyond platelet production: Megakaryocytes' emerging roles in immunity and infection.

Malays J Pathol

December 2024

University Tunku Abdul Rahman, Faculty of Medicine and Health Sciences, Cheras 43000 Kajang, Selangor, Malaysia.

Conventionally, megakaryocytes (MKs) are regarded as platelet-producing cells and their platelet-related functions in haemostasis have been well documented. However, it is increasingly evident that MKs have functions beyond platelet production. Convincing findings suggest that MKs are active participants in immunity and infections.

View Article and Find Full Text PDF

To establish a sustainable cultured meat technology, a low-cost culture medium must be developed without expensive biological materials such as serum and coating substances. However, even adhering bovine myogenic cells to uncoated culture dishes in the serum-free medium is challenging. We found that serum-free culture medium conditioned by HepG2 and NIH/3T3 cells not only accomplished the cell adhesion on uncoated culture dishes (the serum-containing medium : the serum-free medium : the conditioned medium = 6722 ± 1500 : 2210 ± 319 : 5985 ± 1558 cells/cm), but also induced proliferation comparable to that observed in a serum-containing medium (the serum-containing medium : the serum-free medium : the conditioned medium = 10,050 ± 2814 : 2200 ± 707 : 8998 ± 3890 cells/cm).

View Article and Find Full Text PDF

Roles of ROCK/Myosin Pathway in Macrothrombocytopenia in Bernard-Soulier Syndrome.

Thromb Haemost

December 2024

Division of Hematology, Faculty of Medicine, Excellence Center in Translational Hematology, Chulalongkorn University, Bangkok, Thailand.

Background:  Megakaryocytes (MK) from Bernard-Soulier syndrome (BSS) induced pluripotent stem cells (iPSCs) yielded reduced numbers but increased sizes of platelets. The molecular mechanisms remain unclear. This study aims to determine roles of signaling molecules involved in this process.

View Article and Find Full Text PDF

Highly efficient generation of mature megakaryocytes and functional platelets from human embryonic stem cells.

Stem Cell Res Ther

November 2024

Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.

Article Synopsis
  • Platelet transfusion therapy has advanced significantly, and the generation of functional platelets from human embryonic stem cells (hESCs) presents new possibilities, but challenges remain in efficiently producing these platelets.* -
  • Researchers developed a method that uses hypoxic conditions and a specific combination of cytokines to effectively differentiate hESCs into mature megakaryocytes (MKs) and functional platelets, demonstrating strong maturation and functionality through various analyses.* -
  • The study found that under the new 3D differentiation conditions, a high percentage of MKs and platelets showed the desired markers and functionality, with the generated hESC-derived platelets successfully restoring normal clotting in mouse models of thrombocytopenia.*
View Article and Find Full Text PDF

Therapeutic Effect of Extract on a Cell System Model for Parkinson's Disease.

NeuroSci

September 2024

InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.).

Article Synopsis
  • Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein play significant roles in the development of Parkinson's disease, particularly through their impact on neuroinflammation and oxidative stress.
  • In this study, a marine algal extract was found to inhibit LRRK2 activity, reduce inflammatory responses in microglial cells, and prevent α-synuclein fibril formation related to Parkinson's pathology.
  • The extract also enhanced lysosomal function in human dopaminergic neurons and slightly improved cell survival in a model of oxidative stress induced by rotenone.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!