Vegetable proteins are appearing as a sustainable source for human consumption. Food-derived peptides are an important field of research in terms of bioactive molecules. In this study, seven vegetable proteins were enzymatically hydrolysed following an optimised treatment (sequential hydrolysis with subtilisin-trypsin-flavourzyme) to obtain dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Hydrolysates were fractionated by size exclusion chromatography and, from the most bioactive fractions (corresponding to Glycine max, Chenopodium quinoa and Lupinus albus proteins); peptides responsible for this bioactivity were identified by mass spectrometry. Peptides with adequate molecular features and based on in silico analysis were proposed as DPP-IV inhibitors from soy (EPAAV) lupine (NPLL), and quinoa (APFTVV). These vegetable protein sources are adequate to obtain protein hydrolysates for functional food.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.129473 | DOI Listing |
Alzheimers Dement
December 2024
National Institute on Aging, NIH, Baltimore, MD, USA.
Background: Epidemiological studies report an elevated risk of neurodegenerative disorders, particularly Parkinson's disease (PD), in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed incretin mimetics or dipeptidyl peptidase 4 inhibitors (DPP-4Is). Incretin mimetic repurposing appears promising in human PD and Alzheimer's disease (AD) clinical trials. DPP-4Is are yet to be evaluated in PD or AD human studies.
View Article and Find Full Text PDFFood Res Int
January 2025
The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.
Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco.
Background: SARS-CoV-2 responsible for the COVID-19 pandemic, infiltrates the human body by binding to the ACE2 receptor in the respiratory system cell membranes, leading to severe lung tissue damage. An analog of ACE2, ACE1, has gained attention due to its well-known Deletion/Insertion (D/I) polymorphism, which seems to be associated with COVID-19 outcomes. This study aims to reveal the allelic and genotypic frequencies of the rs4646994 polymorphism in the Moroccan population and investigate the association between COVID-19 outcomes and both genotypic and demographic data.
View Article and Find Full Text PDFDiabetes Care
January 2025
Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada.
Objective: To determine whether glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter 2 (SGLT-2) inhibitors, separately, compared with dipeptidyl peptidase 4 (DPP-4) inhibitors are associated with a reduced risk of cirrhosis and other adverse liver outcomes among patients with type 2 diabetes.
Research Design And Methods: With an active comparator, new-user approach, we conducted a cohort study using the U.K.
Diabetol Metab Syndr
January 2025
Bahrain Defence Force Royal Medical Services, Riffa, Kingdom of Bahrain.
Background: Dipeptidyl peptidase-4 inhibitors (DPP-4is) and drugs interfering with the renin-angiotensin-aldosterone system (RAAS) are frequently co-prescribed in type 2 diabetes management. Both drug classes have been independently associated with angioedema, raising concerns about potential interaction risks. This study aimed to evaluate the safety signals and interaction patterns for angioedema associated with DPP-4is alone and in combination with RAAS-interfering drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!