Prospects of ultraviolet resonance Raman spectroscopy in supramolecular chemistry on proteins.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry (Physical Chemistry), Center for Nanointegration Duisburg-Essen (CENIDE) and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany. Electronic address:

Published: June 2021

Ultraviolet resonance Raman scattering (UVRR) has been frequently used for studying peptide and protein structure and dynamics, while applications in supramolecular chemistry are quite rare. Since UVRR offers the additional advantages of chromophore selectivity and high sensitivity compared with conventional non-resonant Raman scattering, it is ideally suited for label-free probing of relatively small artificial/supramolecular ligands exhibiting electronic resonances in the UV. In this perspective article, we first summarize results of UVRR spectroscopy in supramolecular chemistry in the context of peptide/protein recognition. We focus on selected artificial ligands which were rationally designed as selective carboxylate binders (guanidiniocarbonyl pyrrole, GCP, and guanidiniocarbonyl indole, GCI) and selective lysine binder (molecular tweezer, CLR01), respectively, via a combination of non-covalent interactions involving electrostatics, hydrogen bonding, and hydrophobic effects/van der Waals forces. Current limitations of applying UVRR as a universally applicable method for label-free and site-specific probing of molecular recognition between supramolecular ligands and proteins are highlighted. We then propose solutions to overcome these limitations for transforming UVRR spectroscopy into a generic tool in supramolecular chemistry on proteins, with an emphasis on mono- and multivalent GCP- and GCI-based ligands. Finally, we outline specific cases of supramolecular ligands such as molecular tweezers where alternative approaches such as laser-based mid-IR spectroscopy are required since UVRR can intrinsically not provide the required molecular information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.119622DOI Listing

Publication Analysis

Top Keywords

supramolecular chemistry
16
ultraviolet resonance
8
resonance raman
8
spectroscopy supramolecular
8
chemistry proteins
8
raman scattering
8
uvrr spectroscopy
8
supramolecular ligands
8
supramolecular
6
uvrr
6

Similar Publications

Anion Transport by Bambusuril-Bile Acid Conjugates: Drastic Effect of the Cholesterol Content.

Angew Chem Int Ed Engl

January 2025

Universite Libre de Bruxelles, Engineering of Molecular NanoSystems, Avenue F. Roosevelt 50, 1050, Brussels, BELGIUM.

Artificial anion transporters offer a potential way to treat deficiencies in cellular anion transport of genetic origins. In contrast to the large variety of mobile anion carriers and self-assembled anion channels reported, unimolecular anion channels are less investigated. Herein, we present a unique example of a unimolecular anion channel based on a bambusuril (BU) macrocycle, a well-established anion receptor.

View Article and Find Full Text PDF

Separation of Highly Pure Semiconducting Single-Wall Carbon Nanotubes in Alkane Solvents via Double Liquid-Phase Extraction.

Nanomaterials (Basel)

December 2024

Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.

This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).

View Article and Find Full Text PDF

A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.

View Article and Find Full Text PDF

The matere bond.

Dalton Trans

January 2025

Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.

This perpective delves into the emerging field of matere bonds, a novel type of noncovalent interaction involving group 7 elements such as manganese, technetium, and rhenium. Matere bonds, a new member of the σ-hole family where metal atoms act as electron acceptors, have been shown experimentally and theoretically to play significant roles in the self-assembly and stabilization of supramolecular structures both in solid-state and solution-phase environments. This perspective article explores the physical nature of these interactions, emphasizing their directionality and structural influence in various supramolecular architectures.

View Article and Find Full Text PDF

The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!