Background: Spinal muscular atrophy type 1 is a motor neuron disorder resulting in death or the need for permanent ventilation by age 2 years. We aimed to evaluate the safety and efficacy of onasemnogene abeparvovec (previously known as AVXS-101), a gene therapy delivering the survival motor neuron gene (SMN), in symptomatic patients (identified through clinical examination) with infantile-onset spinal muscular atrophy.

Methods: STR1VE was an open-label, single-arm, single-dose, phase 3 trial done at 12 hospitals and universities in the USA. Eligible patients had to be younger than 6 months and have spinal muscular atrophy with biallelic SMN1 mutations (deletion or point mutations) and one or two copies of SMN2. Patients received a one-time intravenous infusion of onasemnogene abeparvovec (1·1 × 10 vector genomes per kg) for 30-60 min. During the outpatient follow-up, patients were assessed once per week, beginning at day 7 post-infusion for 4 weeks and then once per month until the end of the study (age 18 months or early termination). Coprimary efficacy outcomes were independent sitting for 30 s or longer (Bayley-III item 26) at the 18 month of age study visit and survival (absence of death or permanent ventilation) at age 14 months. Safety was assessed through evaluation of adverse events, concomitant medication usage, physical examinations, vital sign assessments, cardiac assessments, and laboratory evaluation. Primary efficacy endpoints for the intention-to-treat population were compared with untreated infants aged 6 months or younger (n=23) with spinal muscular atrophy type 1 (biallelic deletion of SMN1 and two copies of SMN2) from the Pediatric Neuromuscular Clinical Research (PNCR) dataset. This trial is registered with ClinicalTrials.gov, NCT03306277 (completed).

Findings: From Oct 24, 2017, to Nov 12, 2019, 22 patients with spinal muscular atrophy type 1 were eligible and received onasemnogene abeparvovec. 13 (59%, 97·5% CI 36-100) of 22 patients achieved functional independent sitting for 30 s or longer at the 18 month of age study visit (vs 0 of 23 patients in the untreated PNCR cohort; p<0·0001). 20 patients (91%, 79-100]) survived free from permanent ventilation at age 14 months (vs 6 [26%], 8-44; p<0·0001 in the untreated PNCR cohort). All patients who received onasemnogene abeparvovec had at least one adverse event (most common was pyrexia). The most frequently reported serious adverse events were bronchiolitis, pneumonia, respiratory distress, and respiratory syncytial virus bronchiolitis. Three serious adverse events were related or possibly related to the treatment (two patients had elevated hepatic aminotransferases, and one had hydrocephalus).

Interpretation: Results from this multicentre trial build on findings from the phase 1 START study by showing safety and efficacy of commercial grade onasemnogene abeparvovec. Onasemnogene abeparvovec showed statistical superiority and clinically meaningful responses when compared with observations from the PNCR natural history cohort. The favourable benefit-risk profile shown in this study supports the use of onasemnogene abeparvovec for treatment of symptomatic patients with genetic or clinical characteristics predictive of infantile-onset spinal muscular atrophy type 1.

Funding: Novartis Gene Therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1474-4422(21)00001-6DOI Listing

Publication Analysis

Top Keywords

spinal muscular
24
muscular atrophy
20
onasemnogene abeparvovec
16
copies smn2
12
atrophy type
12
gene therapy
8
infantile-onset spinal
8
patients
8
str1ve open-label
8
open-label single-arm
8

Similar Publications

Spinal muscular atrophy (SMA) is a progressive disease that affects motor neurons, with symptoms usually starting in infancy or early childhood. Recent breakthroughs in treatments targeting SMA have improved both lifespan and quality of life for infants and children with the disease. Given the impact of these treatments, it is essential to develop methods for managing treatment-induced changes in disease characteristics.

View Article and Find Full Text PDF

Pushing the boundaries: future directions in the management of spinal muscular atrophy.

Trends Mol Med

January 2025

MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK; Neuromuscular Centre, Division of Paediatrics, University Hospital of Liège and University of Liège, 4000, Liège, Belgium. Electronic address:

Spinal muscular atrophy (SMA) is a devastating, degenerative, paediatric neuromuscular disease which until recently was untreatable. Discovery of the responsible gene 30 years ago heralded a new age of pioneering therapeutic developments. Three disease-modifying therapies (DMTs) have received regulatory approval and have transformed the disease, reducing disability and prolonging patient survival.

View Article and Find Full Text PDF

Hirayama disease, also known as non-progressive juvenile spinal muscular atrophy of the upper limbs, brachial monomelic amyotrophy, or benign focal atrophy, affects the C7 D1 myotomes; an electromyogram (EMG) shows neurogenic damage in the C7-C8-T1 territories. It causes weakness and amyotrophy of the distal upper limb. Although it usually occurs on one side only, bilateral symmetric cases of Hirayama disease have occasionally been described.

View Article and Find Full Text PDF

Motor function and compound muscle action potential amplitude in children with spinal muscular atrophy treated with nusinersen.

Brain Dev

January 2025

Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China. Electronic address:

Background: Disease-modifying therapies can improve motor function in patients with spinal muscular atrophy (SMA), but efficacy varies between individuals. The aim was to evaluate the efficacy and safety of nusinersen treatment in children with SMA and to investigate prognostic factors.

Methods: Motor function, compound muscle action potential (CMAP), and other indicators were prospectively collected before and 14 months after nusinersen treatment.

View Article and Find Full Text PDF

Objectives: Physical function assessments in patients with spinal muscular atrophy (SMA) are important indicators for assessing the effectiveness of treatment and changes over time in rehabilitation therapy. However, few reports exist on this indicator. This study calculated the minimal clinically important difference (MCID) for assessing motor function in the upper and lower limbs of individuals with SMA to estimate the degree of change within a functional score that is considered clinically meaningful.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!