Background: B7 homolog 3 (B7-H3), a member of the immunoregulatory ligand B7 family, is pivotal in T-cell-mediated immune response. It is widely expressed in diverse human tumors and its high expression indicates the poor prognosis of the patients. Nonetheless, B7-H3's role in colorectal cancer (CRC) needs to be further explored.
Methods: Western blot and immunohistochemistry were employed for detecting B7-H3 protein expression in CRC tissues and cell lines, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for detecting B7-H3 mRNA and miR-128 expression levels. CRC cell lines SW620 and HT29 were used to construct B7-H3 overexpression or knockdown cell models, respectively. Cell counting kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU), and scratch wound healing assays were employed for evaluating the effects of B7-H3 on CRC cell multiplication and migration. Besides, the regulatory relationship between miR-128 and B7-H3 was validated through dual-luciferase reporter gene assay, qRT-PCR, and western blotting.
Results: B7-H3 expression level was remarkably elevated in CRC tissues and cell lines, and its high expression level was associated with increased tumor size, positive lymph node metastasis, and increased T stage. In CRC cells, B7-H3 overexpression significantly facilitated the cell multiplication and migration, while B7-H3 knockdown worked oppositely. Moreover, B7-H3 was identified as a target of miR-128, and miR-128 negatively regulated B7-H3 expression in CRC cells.
Conclusion: B7-H3 expression is upregulated in CRC tissues and cell lines, and B7-H3 participates in promoting the proliferation and migration of CRC cells. Besides, B7-H3 expression is negatively regulated by miR-128 in CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-021-00975-0 | DOI Listing |
Eur J Epidemiol
January 2025
Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden.
The Stockholm Early Detection of Cancer Study (STEADY-CAN) cohort was established to investigate strategies for early cancer detection in a population-based context within Stockholm County, the capital region of Sweden. Utilising real-world data to explore cancer-related healthcare patterns and outcomes, the cohort links extensive clinical and laboratory data from both inpatient and outpatient care in the region. The dataset includes demographic information, detailed diagnostic codes, laboratory results, prescribed medications, and healthcare utilisation data.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Zentalis Pharmaceuticals, Inc., San Diego, CA, USA.
Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.
View Article and Find Full Text PDFSci Rep
January 2025
School of Medicine, Nankai University, Tianjin, 300071, China.
Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK.
Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only a small subset of prostate cancers are aggressive and require removal and treatment to prevent metastatic spread. However, conventional diagnostics remain challenged to risk-stratify such patients; hence, new methods of approach to biomolecularly sub-classify the disease are needed. Here we use an unsupervised self-organising map approach to analyse live-cell Raman spectroscopy data obtained from prostate cell-lines; our aim is to exemplify this method to sub-stratify, at the single-cell-level, the cancer disease state using high-dimensional datasets with minimal preprocessing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!