The remediation potential of large biomass energy grasses in cadmium-contaminated soil remains ambiguous. A field experiment was carried out in a cadmium-contaminated farmland using two energy grasses and two control plants. The two energy grasses were hybrid pennisetum (×, PAP) and purple elephant grass ( 'Purple', PPP), and the two control plants were var. (ILC) and a cadmium hyperaccumulator, (NC). The results showed that the aboveground biomass of PAP was the largest among the four plants, and 126 and 36 times that of NC and ILC, respectively, but no significant difference with that of PPP. The concentrations of cadmium and zinc in the shoots and roots of NC were significantly higher than in the other plants. Zinc concentrations in the shoots and roots of ILC were lower than in the other plants, while cadmium concentrations were significantly higher than in PAP and PPP (<0.05). The amounts of cadmium and zinc accumulated in the shoots of PPP were the highest among the four plants, while cadmium concentrations in the shoots and roots of PPP were significantly lower than in ILC and NC (<0.05). Cadmium amounts accumulated in PPP shoots were 7.0 and 4.1 times that of ILC and NC, respectively. Zinc amounts accumulated in PPP shoots were 41 and 11 times that of ILC and NC, respectively (<0.05). Cadmium accumulation in the shoots of PAP was 19.4% lower than in PPP, and zinc accumulation had no significant difference with that of PPP. NC, having a bioconcentration factor of shoot (BCFS) and a translocation factor (TF) for cadmium and zinc both larger than 1, is usable for phytoextraction of soils contaminated by cadmium and zinc. ILC, having a bioconcentration factor of root (BCFR) larger than 1 and a TF lower than 1 for cadmium, is usable for the phytostabilization of soils contaminated by cadmium. PPP, having a BCFR larger than 1 and a TF lower than 1 for zinc, can be used in the phytostabilization of soils contaminated by zinc. Under field conditions, PPP and PAP showed great potential for the extraction and removal of cadmium and zinc from soil due to their large biomass and ability to produce economic benefits, have good application prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202008291 | DOI Listing |
Int J Mol Sci
December 2024
School of Life Sciences, Yan'an University, Yan'an 716000, China.
Ca and Mg are essential micronutrients for plant growth, and they play a crucial role in plant development and responses to adversity by influencing the activities of endogenous hormones and antioxidant enzymes. However, the specific mechanisms through which calcium (Ca) and magnesium (Mg) regulate the kernel sugar content through endogenous hormones and antioxidant enzymes remain unclear. In this study, we analyzed the impact of Ca and Mg on the physiology of maize leaves and kernel quality by determining the activities of antioxidant enzymes and endogenous hormones, and the kernel sugar content in maize leaves when supplemented with different levels of Ca and Mg.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosí, Ciudad Valles, San Luis Potosí 79060, Mexico.
The contamination of rivers by potentially toxic elements (PTEs) is a problem of global importance. The Valles River is Ciudad Valles' (Central Mexico) main source of drinking water. During the four seasons of the year, water samples (n = 6), sediment samples (n = 6), and plants (n = 10) were taken from three study sites selected based on the presence of anthropogenic activities in the Valles River.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Agricultural Sciences, Banaras Hindu University, India, Varanasi.
In South Asia, declining water tables due to increased irrigation and labor shortages for manual weeding pose significant challenges for wheat production. Additionally, herbicide resistance, often resulting from poor management practices, further complicates weed problems. The objective of this study was to assess the impacts of traditional irrigation regimens (IRs) and herbicide application on wheat crops.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an 710075, China; Shaanxi Provincial Land Engineering Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710075, China.
Surface greenness alters regional water storage by regulating hydrological processes, thereby modulating water constraints on ecosystem functions and feeding back sustainability. In semi-arid regions, excessive revegetation may exacerbate regional water resource depletion, intensify water limitations on ecosystems, and threaten long-term sustainability. However, these changes have not been adequately assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!