We investigated the spatial distribution and storage of nitrogen and phosphorus in Lake Chaohu sediments and evaluated the sediment nitrogen and phosphorus pollution index. Results show that the average total nitrogen (TN) and total phosphorus (TP) content in the surface-layer sediments of Lake Chaohu were 1088 mg·kg and 585 mg·kg, respectively, and 666 mg·kg and 509 mg·kg in the bottom-layer sediments, respectively. TN content in the surface layer was significantly higher than in the bottom layer (<0.01). Spatially, TN, TP, and sediment thickness were ranked in the order western lake area > eastern lake area > middle lake area, and the TN and TP contents were significantly different in the surface sediments from the middle and eastern areas of the lake (<0.05, <0.01). TN and TP storage in the lake sediments was 1.58×10 t and 0.98×10 t, respectively. TN and TP were significantly correlated in both the western and middle parts of the lake (<0.01). In addition, TN was significantly correlated with sediment thickness in middle area of the lake, which indicated that TN may have the same pollution sources as TP and both were affected by sediment thickness. TN pollution index (), TP pollution index (), and comprehensive pollution index (FF) values were 1.09, 1.39, and 1.32, respectively, indicating light-to-moderate levels of pollution. Specifically, the western lake surface sediments were heavily polluted with respect to TP, the eastern lake surface sediments were moderately polluted, and the middle lake surface sediments were slightly polluted. Nutrient pollution varied widely between different areas of the lake, with sediments in the western part of the lake presenting a higher safety risk. Overall, these observations indicate that Lake Chaohu is threatened by internal nutrient loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202006216 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China. Electronic address:
Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Correction for 'Responses of CO and CH in the alpine wetlands of the Tibetan Plateau to warming and nitrogen and phosphorus additions' by Wenbao Zhang ,, 2024, , 1516-1525, https://doi.org/10.1039/D4EM00174E.
View Article and Find Full Text PDFBiotechnol Notes
December 2024
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C).
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Resources and environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China. Electronic address:
Limestone mining in arid regions, particularly within fragile environments, leads to severe environmental pollution and ecological degradation. Developing a scientifically sound and effective ecological rehabilitation strategy is therefore critical. This study constructed a three-dimensional ecological rehabilitation model integrating soil amelioration and vegetation reconstruction.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!