[Potential of Arbuscular Mycorrhizal Fungi, Biochar, and Combined Amendment on Sandy Soil Improvement Driven by Microbial Community].

Huan Jing Ke Xue

Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.

Published: April 2021

Sandy soils are considered as a significant transition phase to desertification. The effective recovery of sandy soils is of great significance to mitigate the desertification process. Some studies have shown that arbuscular mycorrhizal (AM) fungi and biochar improved the sandy soil, but there have been very few studies regarding the combined effects of AM fungi and biochar amendments on sandy soil improvement. Additionally, the roles of the bacterial and fungal community during the process of sandy soil improvement remain unclear. A greenhouse pot experiment with four treatments, including a control (CK, no amendment), single AM fungi-assisted amendment (RI), single biochar amendment (BC), and combined amendment (BC_RI, biochar plus AM fungi), was set up. This study investigated the effects of different amendment methods on the mycorrhizal colonization, biomass, nutrient (N, P, K, Ca, and Mg) content, soil organic carbon, soil nutrient (TN, TP, and TK) content, and soil water-stable aggregate composition. High throughput sequencing technology was used to investigate the roles of the bacterial and fungal communities during the process of sandy soil improvement. Combined with multiple analysis methods, the improvement mechanisms of different amendment methods were explored. The aim was to provide basic data and scientific basics for reasonably and effectively improving sandy soils. The results indicated that a significant mycorrhiza colonization was observed in the inoculation (RI and BC_RI) treatments, but there was no substantial difference in the mycorrhiza colonization with the RI and BC_RI. Compared with the CK, the shoot biomass and shoot element (N, K, Ca, and Mg) contents were significantly increased in the RI, and the shoot element (N, P, K, Ca, and Mg) contents were significantly increased in the BC and BC_RI; compared with the RI and BC, the root biomass and the root element (P, K, Ca, and Mg) contents were significantly increased in the BC_RI. Compared with the CK, the soil organic carbon contents were significantly increased in the BC and BC_RI, the soil TN contents were significantly increased by 152.54%, and the soil TP and TK contents were significantly decreased by 12.5% and 18.8%, respectively. The proportion of soil aggregates with particle sizes of 0.25-0.05 mm was the highest in each treatment, and the large particle size (>0.25 mm) soil aggregate was significantly increased in the BC_RI. Compared with the CK, the Sobs and Shannon indices of the bacterial/fungal community were significantly decreased in the RI and BC_RI. There was a difference in the microbial community compositions and abundance in the various treatments. The results of the RDA and network analysis were as follows:the effects of AM fungi, biochar, and combined amendment on the soil environment and microbial community structure were significant; in the different amendment treatments, the relationship of the microbial molecular ecological network was significantly changed, and the composition of the core species varied; compared with the RI, there was a higher network connection degree and a richer core species composition in the BC and BC_RI; moreover, the essential role of was weaken and the core roles of the other microorganisms (especially bacterial species) were enhanced under the combined effects of biochar and AM fungi. The SEM results demonstrated that the application of AM fungi and biochar could directly affect the bacteria/fungi community structure, and further affect the plant growth and soil properties. The differences in the microbial community structure (especially the change in the microbial interaction) were the key driving factors that led to the difference in the soil improvement effectiveness. In summary, the effects of the different amendment methods on the improvement effectiveness of sandy soils varied. The microbial community played key roles in the process of sandy soil improvement, and there were potential advantages and applications in accelerating the ecological restoration of sandy soils under the combined AM fungi and biochar amendment.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202008154DOI Listing

Publication Analysis

Top Keywords

fungi biochar
24
sandy soil
24
soil improvement
24
sandy soils
20
contents increased
20
soil
17
bc_ri compared
16
increased bc_ri
16
microbial community
16
combined amendment
12

Similar Publications

Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.

View Article and Find Full Text PDF

Modeling suction of unsaturated granular soil treated with biochar in plant microbial fuel cell bioelectricity system.

Sci Rep

January 2025

Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.

There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).

View Article and Find Full Text PDF

Soil aggregation alterations under soil microplastic and biochar addition and aging process.

Environ Pollut

January 2025

School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China.

Soil microplastics (MPs) are a substantial threat to soil health, particularly by disrupting soil aggregation. Additionally, MPs undergo aging processes in the soil, which may significantly alter their long-term impacts on soil structure. To investigate these effects, we conducted an eight-month soil incubation experiment, examining the influence of MPs and their aging on soil aggregation.

View Article and Find Full Text PDF

Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR.

Plants (Basel)

December 2024

Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt.

Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha), PGPRs ( (USDA 110) + at 1:1 ratio), and Si-NPs (25 mg L) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues.

View Article and Find Full Text PDF

spp. are soil-borne pathogens that cause damping-off and root rot diseases in many plant species such as cucumber. In the current study, the effect of dried roots-stems and leaves of (Sprengel) R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!