In order to reveal the impact of the application of biogas slurry instead of chemical nitrogen fertilizer on the environmental risk of heavy metals in the soil by returning straw to the field, four treatments, without biogas slurry and without straw applications (CK), biogas slurry application without straw (B), straw application without biogas slurry (S), and biogas slurry combined with straw applications (BS), were applied in a typical coastal reclaimed farmland (rice-wheat rotation) in Jiangsu province. The migration and morphological characteristics of Cu, Zn, Cd, and Pb in different soil layers were observed, and the potential environmental risks were estimated. The results showed that:① The total amounts of Zn and Pb in the surface soils (0-20 cm) in the rice and wheat fields under the BS treatment decreased significantly (<0.05). The four heavy metals in the paddy soils migrated 6%-11% from the surface to the middle and lower layers (20-60 cm), and Cu, Cd, and Pb in the wheat soils migrate down from the surface by 25% to 33%. This indicated that the combined use of biogas slurry and straw accelerates the vertical downward movement of heavy metals in the surface soil. ② Under the BS treatment, the contents of the weak acid extraction of Cu in the surface soil of the paddy field decreased by 8.8%, and the residual state of Zn, Cd, and Pb decreased by 7.0% to 14.2%. This revealed that Cu was passivated, but Zn, Cd, and Pb tended to be activated. In comparison, the reduction in Cu residues in wheat field surface soil was 2.8 times that of the weak acid extraction, indicating that Cu was activated. Furthermore, the residue state of Cd increased, the weak acid extraction state of Pb decreased, and Cd and Pb were passivated. ③ The ecological risk assessment of heavy metals showed that there is no ecological risk in the soils under the BS treatment, and the risk indices were significantly lower than those of the B and S treatments (<0.05). Therefore, the combined use of biogas slurry and straw helps to significantly reduce the risk of heavy metal pollution in the soils in the coastal reclamation areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202007207 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFMicroorganisms
December 2024
Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
In the greenhouse of the Chinese Academy of Sciences located on Huaizhong Road in Shijiazhuang City, Hebei Province, five fertilization treatment levels were established. These consisted of no fertilization (CK), conventional chemical fertilizer (with 100% chemical fertilizer application), and biogas slurry substitution treatments for chemical fertilizers (replacing 30%, 60%, and 100% of the chemical fertilizer nitrogen with biogas slurry nitrogen). Soil nutrient determination methods and high-throughput sequencing were employed to elucidate the correlative relationship between soil nutrients and microbial community metabolism.
View Article and Find Full Text PDFHeliyon
January 2025
Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!