Gastric cancer (GC) is a multifactorial process, accompanied by alterations in metabolic pathways. Non-invasive metabolic profiling facilitates GC diagnosis at early stage leading to an improved prognostic outcome. Herein, mesoporous PdPtAu alloys are designed to characterize the metabolic profiles in human blood. The elemental composition is optimized with heterogeneous surface plasmonic resonance, offering preferred charge transfer for photoinduced desorption/ionization and enhanced photothermal conversion for thermally driven desorption. The surface structure of PdPtAu is further tuned with controlled mesopores, accommodating metabolites only, rather than large interfering compounds. Consequently, the optimized PdPtAu alloy yields direct metabolic fingerprints by laser desorption/ionization mass spectrometry in seconds, consuming 500 nL of native plasma. A distinct metabolic phenotype is revealed for early GC by sparse learning, resulting in precise GC diagnosis with an area under the curve of 0.942. It is envisioned that the plasmonic alloy will open up a new era of minimally invasive blood analysis to improve the surveillance of cancer patients in the clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202007978 | DOI Listing |
Discov Oncol
January 2025
Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
Gastric cancer (GC), one of the most common and heterogeneous malignancies, is the second leading cause of cancer death worldwide and is closely related to dietary habits. Fatty acid is one of the main nutrients of human beings, which is closely related to diabetes, hypertension and other diseases. However, the correlation between fatty acid metabolism and the development and progression of GC remains largely unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Gynecology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
The presence of high-risk human papillomavirus (HR-HPV) contributes to the development of cervical lesions and cervical cancer. Recent studies suggest that an imbalance in the cervicovaginal microbiota might be a factor in the persistence of HR-HPV infections. In this study, we collected 156 cervicovaginal fluid (CVF) of women with HR-HPV infection, which were divided into three groups (negative for intraepithelial lesions = 78, low/high-grade squamous intraepithelial lesions = 52/26).
View Article and Find Full Text PDFMol Metab
January 2025
Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA. Electronic address:
Several groups of neurons in the NTS suppress food intake, including Prlh-expressing neurons (NTS cells). Not only does the artificial activation of NTS cells decrease feeding, but also the expression of Prlh (which encodes the neuropeptide PrRP) and neurotransmission by NTS neurons contributes to the restraint of food intake and body weight, especially in animals fed a high fat diet (HFD). We used animals lacking PrRP receptors GPR10 and/or GRP74 (encoded by Prlhr and Npffr2, respectively) to determine roles for each in the restraint of food intake and body weight by the increased expression of Prlh in NTS neurons (NTS mice) and in response to the anorectic PrRP analog, p52.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, Uttar Pradesh, 211012, India. Electronic address:
Prostate cancer is a widespread health issue that affects men worldwide. It is one of the most common forms of cancer, and its development is influenced by a combination of hereditary, epigenetic, environmental, age, and lifestyle factors. Given that it is the second most common cause of cancer-related deaths in men, it is crucial to comprehend its complex facets.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:
This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!