Methylation regulates HCV genome translation.

Nat Rev Microbiol

Nature Reviews Microbiology, .

Published: May 2021

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41579-021-00548-1DOI Listing

Publication Analysis

Top Keywords

methylation regulates
4
regulates hcv
4
hcv genome
4
genome translation
4
methylation
1
hcv
1
genome
1
translation
1

Similar Publications

TPPP3, a Good Prognostic Indicator, Suppresses Cell Proliferation and Migration in OSCC.

Int Dent J

January 2025

Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China. Electronic address:

Introduction And Aims: Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignancy of the head and neck. Early diagnosis of OSCC is difficult and the prognosis has not improved significantly. This study aims to explore the role of tubulin polymerisation promoting protein 3 (TPPP3) in the occurrence and development of OSCC and discover new diagnostic and prognostic markers for OSCC.

View Article and Find Full Text PDF

Cell division cycle-associated (CDCA) genes are dysregulated in carcinomas. Our study aims to identify similarities and differences of the clinical roles of CDCAs in breast cancer (BRCA) and to explore their potential mechanisms. In GEPIA, compared to normal tissues, expressions of CDCAs were higher in BRCA and sub-types.

View Article and Find Full Text PDF

N6-methyladenosine modification of host Hsc70 attenuates nucleopolyhedrovirus infection in the lepidopteran model insect Bombyx mori.

Int J Biol Macromol

January 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China. Electronic address:

N6-methyladenosine (m6A) is the most prevalent internal modification on mRNA and plays critical roles in various biological processes including virus infection. It has been shown that m6A methylation is able to regulate virus proliferation and host innate immunity in mammals and plants, however, this antiviral defense in insects is largely unknown. Here we investigated function of m6A and its associated methyltransferases in nucleopolyhedrovirus (BmNPV) infection in silkworm.

View Article and Find Full Text PDF

The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms.

Dev Cell

January 2025

Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany. Electronic address:

The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms.

View Article and Find Full Text PDF

Direct lysine dimethylation of IRF3 by the methyltransferase SMYD3 attenuates antiviral innate immunity.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, People's Republic of China.

Interferon regulatory factor 3 (IRF3) is the key transcription factor in the type I IFN signaling pathway, whose activation is regulated by multiple posttranslational modifications. Here, we identify SMYD3, a lysine methyltransferase, as a negative regulator of IRF3. SMYD3 interacts with IRF3 and catalyzes the dimethylation of IRF3 at lysine 39.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!