Epithelial-mesenchymal transition (EMT) is a driving force in promoting malignant cancer, including initiation, growth, and metastasis. EMT is a dynamic process that can undergo a mesenchymal-epithelial transition (MET) and partial transitions between both phenotypes, termed epithelial-mesenchymal plasticity (EMP). In cancer, the acquisition of EMP results in a spectrum of phenotypes, promoting tumor cell heterogeneity and resistance to standard of care therapy. Here we describe a real-time fluorescent dual-reporter for vimentin and E-cadherin, biomarkers of the mesenchymal and epithelial cell phenotypes, respectively. Stable dual-reporter cell lines generated from colorectal (SW620), lung (A549), and breast (MDA-MB-231) cancer demonstrate a spectrum of EMT cell phenotypes. We used the dual-reporter to isolate the quasi epithelial, epithelial/mesenchymal, and mesenchymal phenotypes. Although EMT is a dynamic process, these isolated quasi-EMT-phenotypes remain stable to spontaneous EMP in the absence of stimuli and during prolonged cell culture. However, the quasi-EMT phenotypes can readily be induced to undergo EMT or MET with growth factors or small molecules. Moreover, isolated EMT phenotypes display different tumorigenic properties and are morphologically and metabolically distinct. 3D high-content screening of ~23,000 compounds using dual-reporter mesenchymal SW620 tumor organoids identified small molecule probes that modulate EMT, and a subset of probes that effectively induced MET. The tools, probes, and models described herein provide a coherent mechanistic understanding of mesenchymal cell plasticity. Future applications utilizing this technology and probes are expected to advance our understanding of EMT and studies aimed at therapeutic strategies targeting EMT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944243 | PMC |
http://dx.doi.org/10.1038/s41388-021-01728-2 | DOI Listing |
Front Immunol
March 2025
Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
Hyperactivation of fatty acid biosynthesis holds promise as a targeted therapeutic strategy in prostate cancer (PCa). However, inhibiting these enzymes could potentially promote metastatic progression in various other cancers. Herein, we found that depletion of acetyl-CoA carboxylase 1 (encoded by ACACA), the enzyme responsible for the first and rate-limiting step of de novo fatty acid biosynthesis, facilitated epithelial-mesenchymal transition (EMT) and migration of PCa cells.
View Article and Find Full Text PDFJ Transl Med
March 2025
Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235603, Taiwan.
Background: Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer, with a five-year survival rate below 8%. Its high mortality is largely due to late diagnosis, metastatic potential, and resistance to therapy. Epithelial-mesenchymal transition (EMT) plays a key role in metastasis, enabling cancer cells to become mobile.
View Article and Find Full Text PDFRespir Res
March 2025
Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, People's Republic of China.
Background: Epithelial-mesenchymal transition (EMT) is regarded as a key process in repair of airway epithelium after injury. Forkhead Box C2 (FOXC2) is a transcription factor involved in EMT process, whether it is involved in repair of bronchial epithelium remains unknown.
Methods: C57BL/6 mice were subjected to intraperitoneal injection with naphthalene (NAPH; 200 mg/kg) to induce airway injury model.
Sci Rep
March 2025
Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
Growing evidence suggests that dysregulated microRNAs were critical in the development of tumors and the progression number of malignancies. This research aimed to check the effect of microRNA 320a-3p transfection on gastric cancer (GC) cell lines. Following transfection, the efficacy was determined by the RT-PCR method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!