Oncogenic RAS mutations are associated with tumor resistance to radiation therapy. Cell-cell interactions in the tumor microenvironment (TME) profoundly influence therapy outcomes. However, the nature of these interactions and their role in Ras tumor radioresistance remain unclear. Here we use Drosophila oncogenic Ras tissues and human Ras cancer cell radiation models to address these questions. We discover that cellular response to genotoxic stress cooperates with oncogenic Ras to activate JAK/STAT non-cell autonomously in the TME. Specifically, p53 is heterogeneously activated in Ras tumor tissues in response to irradiation. This mosaicism allows high p53-expressing Ras clones to stimulate JAK/STAT cytokines, which activate JAK/STAT in the nearby low p53-expressing surviving Ras clones, leading to robust tumor re-establishment. Blocking any part of this cell-cell communication loop re-sensitizes Ras tumor cells to irradiation. These findings suggest that coupling STAT inhibitors to radiotherapy might improve clinical outcomes for Ras cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979758PMC
http://dx.doi.org/10.1038/s42003-021-01898-5DOI Listing

Publication Analysis

Top Keywords

oncogenic ras
16
ras tumor
12
ras
11
non-cell autonomously
8
tumor radioresistance
8
ras cancer
8
activate jak/stat
8
ras clones
8
tumor
7
cooperation oncogenic
4

Similar Publications

Longer survival with precision medicine in late-stage cancer patients.

ESMO Open

January 2025

Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. Electronic address:

Background: In a per-protocol analysis of molecularly profiled patients with treatment-refractory, end-stage cancer discussed at the National Molecular Tumor Board (NMTB), we aimed to assess the overall survival (OS) outcome of targeted treatment compared with no targeted treatment.

Materials And Methods: Patients were prospectively included at a single oncological center. Whole exome and RNA sequencing (tumor-normal) were carried out, and cases were presented at the NMTB for discussion of targeted treatment.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a poor prognosis for survival. Risk factors include alcohol and tobacco abuse and infection with human papilloma virus (HPV). To enhance anti-tumor immune responses immunotherapeutic approaches are approved for recurrent metastatic disease but only approx.

View Article and Find Full Text PDF

A stromal inflammasome Ras safeguard against Myc-driven lymphomagenesis.

Nat Immunol

January 2025

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice.

View Article and Find Full Text PDF

Multiomics analysis reveals the involvement of NET1 in tumour immune regulation and malignant progression.

Sci Rep

January 2025

Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China.

Neuroepithelial cell transforming gene 1 (NET1) is a member of the Ras homologue family member A (RhoA) subfamily of guanine nucleotide exchange factors and a key protein involved in the activation of Rho guanosine triphosphatases, which act as regulators of cell proliferation, cytoskeletal organization, and cell movement and are crucial for cancer spread. Research has shown that NET1 can regulate the malignant biological functions of tumour cells, such as growth, invasion, and metastasis, and it is closely related to the progression of pancreatic cancer, gastric cancer, and liver cancer. However, the comprehensive role and mechanistic function of NET1 in other types of cancer remain largely unexplored.

View Article and Find Full Text PDF

Mitochondrial-cytochrome c oxidase II promotes glutaminolysis to sustain tumor cell survival upon glucose deprivation.

Nat Commun

January 2025

Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!