AI Article Synopsis

  • Tropical secondary forests can capture carbon at rates up to 20 times faster than old-growth forests, with younger forests in the west of Brazil sequestering significantly more carbon than those in the east.
  • Environmental disturbances, such as fires and deforestation, can drastically reduce these regrowth rates by up to 55%.
  • Protecting and expanding secondary forests, while also conserving old-growth areas, is essential for maximizing their role in reducing Brazil's carbon emissions by 2030.

Article Abstract

Tropical secondary forests sequester carbon up to 20 times faster than old-growth forests. This rate does not capture spatial regrowth patterns due to environmental and disturbance drivers. Here we quantify the influence of such drivers on the rate and spatial patterns of regrowth in the Brazilian Amazon using satellite data. Carbon sequestration rates of young secondary forests (<20 years) in the west are ~60% higher (3.0 ± 1.0 Mg C ha yr) compared to those in the east (1.3 ± 0.3 Mg C ha yr). Disturbances reduce regrowth rates by 8-55%. The 2017 secondary forest carbon stock, of 294 Tg C, could be 8% higher by avoiding fires and repeated deforestation. Maintaining the 2017 secondary forest area has the potential to accumulate ~19.0 Tg C yr until 2030, contributing ~5.5% to Brazil's 2030 net emissions reduction target. Implementing legal mechanisms to protect and expand secondary forests whilst supporting old-growth conservation is, therefore, key to realising their potential as a nature-based climate solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979697PMC
http://dx.doi.org/10.1038/s41467-021-22050-1DOI Listing

Publication Analysis

Top Keywords

secondary forests
12
brazilian amazon
8
large carbon
4
carbon sink
4
sink potential
4
potential secondary
4
forests
4
forests brazilian
4
amazon mitigate
4
mitigate climate
4

Similar Publications

Planted forests have expanded globally over the last three decades and are expected to act as carbon sinks to mitigate further climate change. However, the planted coniferous forests in Japan are now predicted to shrink in area and age in the future. To quantify the impact of the shrinking and aging of Japanese cedar (Cryptomeria japonica D.

View Article and Find Full Text PDF

The epidemiological behavior of Plasmodium vivax malaria occurs across spatial scales including within-host, population, and metapopulation levels. On the within-host scale, P. vivax sporozoites inoculated in a host may form latent hypnozoites, the activation of which drives secondary infections and accounts for a large proportion of P.

View Article and Find Full Text PDF

Field data on diversity and vegetation structure of natural regeneration in a chronosequence of abandoned gold-mining lands in a tropical Amazon forest.

Data Brief

December 2024

Departamento Académico de Ingeniería Forestal y Medio Ambiente, Universidad Nacional Amazónica de Madre Dios, Av. Jorge Chavez 1160, Puerto Maldonado 17001, Peru.

Anthropogenic activities (e.g., logging, gold-mining, agriculture, and uncontrolled urban expansion) threaten the forests in the southeast of the Peruvian Amazon, one of the most diverse ecosystems worldwide.

View Article and Find Full Text PDF

Tunability in Heterobimetallic Complexes Featuring an Acyclic "Tiara" Polyether Motif.

Inorg Chem

December 2024

Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States.

Both cyclic "crown" and acyclic "tiara" polyethers have been recognized as useful for the binding of metal cations and enabling the assembly of multimetallic complexes. However, the properties of heterobimetallic complexes built upon acyclic polyethers have received less attention than they deserve. Here, the synthesis and characterization of a family of eight redox-active heterobimetallic complexes that pair a nickel center with secondary redox-inactive cations (K, Na, Li, Sr, Ca, Zn, La, and Lu) bound in acyclic polyether "tiara" moieties are reported.

View Article and Find Full Text PDF

Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!