Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Strictly controlled inducible gene expression is crucial when engineering biological systems where even tiny amounts of a protein have a large impact on function or host cell viability. In these cases, leaky protein production must be avoided, but without affecting the achievable range of expression. Here, we demonstrate how the central dogma offers a simple solution to this challenge. By simultaneously regulating transcription and translation, we show how basal expression of an inducible system can be reduced, with little impact on the maximum expression rate. Using this approach, we create several stringent expression systems displaying >1000-fold change in their output after induction and show how multi-level regulation can suppress transcriptional noise and create digital-like switches between 'on' and 'off' states. These tools will aid those working with toxic genes or requiring precise regulation and propagation of cellular signals, plus illustrate the value of more diverse regulatory designs for synthetic biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979795 | PMC |
http://dx.doi.org/10.1038/s41467-021-21995-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!