Effects of in vivo treatment of mice with sulforaphane on repair of DNA pyridyloxylbutylation.

Toxicology

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada. Electronic address:

Published: April 2021

The phytochemical sulforaphane (SF) has gained interest for its apparent association with reduced cancer risk and other cytoprotective properties, at least some of which are attributed to activation of the transcription factor Nrf2. Repair of bulky DNA adducts is important for mitigating carcinogenesis from exogenous DNA damaging agents, but it is unknown whether in vivo treatment with SF affects adduct repair. At 12 h following a single oral dose of 100 mg/kg SF, an almost doubling in activity for repair of pyridyloxobutylated DNA was observed in CD-1 mouse liver nuclear extracts, but not in lung extracts. This change at 12 h in repair activity was preceded by the induction of Nrf2-regulated genes but not accompanied by changes in levels of the specific nucleotide excision repair (NER) proteins XPC, XPA, XPB and p53 or in binding of hepatic XPC, XPA and XPB to damaged DNA. SF also did not significantly alter histone deacetylase activity as measured by acetylated histone H3 levels, or stimulate formation of γ-H2A.X, a marker of DNA damage. A significant reduction in oxidative DNA damage, as measured by 8-OHdG (a biomarker of oxidative DNA damage), was observed only in DNA from the lungs of SF-treated mice 3 h post-dosing. These results suggest that the ability of SF to increase bulky adduct repair activity is organ-selective and is consistent with activation of the Nrf2 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2021.152753DOI Listing

Publication Analysis

Top Keywords

dna damage
12
dna
9
vivo treatment
8
adduct repair
8
repair activity
8
xpc xpa
8
xpa xpb
8
oxidative dna
8
repair
7
effects vivo
4

Similar Publications

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.

View Article and Find Full Text PDF

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!