This study reports variants of the ctxB allele of Vibrio cholerae O1 isolated between 1995 and 2019 in Odisha, India. ctxB1 genotypes dominated from 1995 to 2016. The Haitian variant and El Tor ctxB3 genotypes of V. cholerae O1 emerged in 1999, and were most common in 2018-2019 and 2005-2011, respectively. The ctxB7 genotype of the Haitian variant of V. cholerae O1 was quiescent from 2000 to 2006, but further spread was noted from 2007 to 2019.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijid.2021.03.042 | DOI Listing |
FEMS Microbiol Lett
January 2025
Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China.
Non-O1/non-O139 (NOVC) strains inhabit aquatic environments and sporadically induce human illnesses. This study involved the virulence and antimicrobial genetic characterization of 176 NOVC strains, comprising 25 from clinical samples and 151 from environmental sources, collected between 2021 and 2023. The antimicrobial susceptibility of the examined NOVC population was predominantly high, exhibiting only poor susceptibility to colistin, with 89.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
January 2025
Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; Department of Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, 17 Jubilee Road, Parktown 2193, Johannesburg, South Africa.
Infections by non-O1/non-O139 serogroups of Vibrio cholerae (NOVC) are increasing worldwide. Infected patients usually display self-limiting diarrhoea or external ear and wound infections. We present a rare case of bacteraemia secondary to NOVC infection.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Center for Applied Molecular Technologies (CTMA), Institute of Clinical and Experimental Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
Objective: Multiple-Locus Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) is widely used to subtype pathogens causing foodborne and waterborne disease outbreaks. The MLVAType shiny application was previously designed to extract MLVA profiles of Vibrio cholerae isolates from whole-genome sequencing (WGS) data, and provide backward compatibility with traditional MLVA typing methods. The previous development and validation work was conducted using short (pair-end 300 and 150 nt long) reads from Illumina MiSeq and Hiseq sequencing.
View Article and Find Full Text PDFMol Microbiol
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Bacterial pathogens possess a remarkable capacity to sense and adapt to ever-changing environments. For example, Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in aquatic ecosystems and human hosts through dynamic survival strategies. In this study, we investigated the role of three photolyases, enzymes that repair DNA damage caused by exposure to UV radiation and blue light, in the environmental survival of V.
View Article and Find Full Text PDFQRB Discov
December 2024
Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!