Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA, C), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), are involved in numerous biological processes and have a range of health benefits. Fish have long been considered as the main source of n-3 LC-PUFA in human diets. However, the capacity for endogenous biosynthesis of LC-PUFA from C PUFA varies in fish species based on the presence, expression and activity of key enzymes including fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. In this article, we review progress on the identified Fads and Elovl, as well as the regulatory mechanisms of LC-PUFA biosynthesis both at transcriptional and post-transcriptional levels in teleosts. The most comprehensive advances have been obtained in rabbitfish Siganus canaliculatus, a marine teleost demonstrated to have the entire pathway for LC-PUFA biosynthesis, including the roles of transcription factors hepatocyte nuclear factor 4α (Hnf4α), liver X receptor alpha (Lxrα), sterol regulatory element-binding protein 1 (Srebp-1), peroxisome proliferator-activated receptor gamma (Pparγ) and stimulatory protein 1 (Sp1), as well as post-transcriptional regulation by individual microRNA (miRNA) or clusters. This research has, for the first time, demonstrated the involvement of Hnf4α, Pparγ and miRNA in the regulation of LC-PUFA biosynthesis in vertebrates. The present review provides readers with a relatively comprehensive overview of the progress made into understanding LC-PUFA biosynthetic systems in teleosts, and some insights into improving endogenous LC-PUFA biosynthesis capacity aimed at reducing the dependence of aquafeeds on fish oil while maintaining or increasing flesh LC-PUFA content and the nutritional quality of farmed fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plipres.2021.101095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!