Background: Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions.

Results: We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts.

Conclusion: Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980591PMC
http://dx.doi.org/10.1186/s12862-021-01777-xDOI Listing

Publication Analysis

Top Keywords

nbp35 cfd1
12
fes assembly
12
hcf101
10
sar haptista
8
haptista cryptista
8
nbp35-like proteins
8
predicted reside
8
phylogenetic analysis
8
ancestral hcf101
8
proteins
5

Similar Publications

Leishmania donovani is the causative unicellular parasite for visceral leishmaniasis (VL); and FeS proteins are likely to be very essential for their survival and viability. Cytosolic FeS cluster assembly (CIA) machinery is one of the four systems for the biosynthesis and transfer of FeS clusters among eukaryotes; Cfd1 and Nbp35 are the scaffold components for cytosolic FeS cluster biogenesis. We investigated the role of CIA machinery components and purified Cfd1 and Nbp35 proteins of L.

View Article and Find Full Text PDF

Iron-regulated assembly of the cytosolic iron-sulfur cluster biogenesis machinery.

J Biol Chem

July 2022

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA. Electronic address:

The cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway delivers Fe-S clusters to nuclear and cytosolic Fe-S proteins involved in essential cellular functions. Although the delivery process is regulated by the availability of iron and oxygen, it remains unclear how CIA components orchestrate the cluster transfer under varying cellular environments. Here, we utilized a targeted proteomics assay for monitoring CIA factors and substrates to characterize the CIA machinery.

View Article and Find Full Text PDF

Complex biosynthetic pathways are required for the assembly and insertion of iron-sulfur (Fe-S) cluster cofactors. Each of the four cluster biogenesis systems that have been discovered requires at least one ATPase. Generally, the function of nucleotide hydrolysis in Fe-S cluster biogenesis is understudied.

View Article and Find Full Text PDF

Background: Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!