Soils as key component of terrestrial ecosystems are under increasing pressures. As an advance to current static assessments, we present a dynamic soil functions assessment (SFA) to evaluate the current and future state of soils regarding their nutrient storage, water regulation, productivity, habitat and carbon sequestration functions for the case-study region in the Lower Austrian Mostviertel. Carbon response functions simulating the development of regional soil organic carbon (SOC) stocks until 2100 are used to couple established indicator-based SFA methodology with two climate and three land use scenarios, i.e. land sparing (LSP), land sharing (LSH), and balanced land use (LBA). Results reveal a dominant impact of land use scenarios on soil functions compared to the impact from climate scenarios and highlight the close link between SOC development and the quality of investigated soil functions, i.e. soil functionality. The soil habitat and soil carbon sequestration functions on investigated agricultural land are positively affected by maintenance of grassland under LSH (20% of the case-study region), where SOC stocks show a steady and continuous increase. By 2100 however, total regional SOC stocks are higher under LSP compared to LSH or LBA, due to extensive afforestation. The presented approach may improve integrative decision-making in land use planning processes. It bridges superordinate goals of sustainable development, such as climate change mitigation, with land use actions taken at local or regional scales. The dynamic SFA broadens the debate on LSH and LSP and can reduce trade-offs between soil functions through land use planning processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112318DOI Listing

Publication Analysis

Top Keywords

soil functions
20
soc stocks
12
land
10
dynamic soil
8
functions
8
functions assessment
8
climate scenarios
8
soil
8
carbon sequestration
8
sequestration functions
8

Similar Publications

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.

View Article and Find Full Text PDF

Human alveolar echinococcosis (HAE), which is caused by the larval stage of the Echinococcus multilocularis tapeworm, is an increasing healthcare issue in Hungary. Among the 40 known cases in the country, 25 were detected in the last five years. Our study aimed to reveal the geographically underlying risk factors associated potentially with these cases.

View Article and Find Full Text PDF

Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!