Avermectin induced DNA damage to the apoptosis and autophagy in human lung epithelial A549 cells.

Ecotoxicol Environ Saf

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Published: June 2021

Avermectin (AVM), as a biological insecticide, is widely used in agriculture and forestry production globally. However, inhalation of AVM may pose a risk, and the lung is the direct target, but the cytotoxicity of AVM on human lung cells is still unclear. Here, we attempted to elucidate the cytotoxic effect and molecular mechanism of AVM on human lung A549 cells. The results indicated that AVM inhibits cell proliferation, and enhances programmed cell death (apoptosis and autophagy). In addition, we found the AVM-treated cells showed an obvious drop in mitochondrial membrane potential and LC3-I/II, increased ROS production, DNA double-strand breaks, caspase-3/9 activated, PARP cleaved, cytochrome c and Bax/Bcl-2 content rise. The results showed that AVM induced mitochondria-related apoptosis and autophagy in lung A549 cells. These results indicate that AVM can pose a potential threat to human health by inducing DNA damage and programmed cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112129DOI Listing

Publication Analysis

Top Keywords

apoptosis autophagy
12
human lung
12
a549 cells
12
dna damage
8
avm pose
8
avm human
8
lung a549
8
programmed cell
8
cell death
8
avm
7

Similar Publications

Synthesis and Anticancer Studies of Pt(II) Complex Derived from 4-Phenylthiosemicarbazone.

Chem Biodivers

January 2025

Guangxi Science and Technology Normal University, School of food biochemical engineering, Tiebei road 966, 546199, Laibin, CHINA.

Although cisplatin is widely used as a first-line chemotherapy agent, it has significant side effects. Herein, we synthesized a Pt(II) complex (Pt1) derived from o-vanillin-4-phenylthiosemicarbazone ligand, and confirmed its crystal structure by X-ray crystallography. Complex Pt1 exhibited potent anticancer activity against various tested cancer cell lines, with particular efficacy against HepG-2 cells.

View Article and Find Full Text PDF

T helper 2 cell-directed immunotherapy eliminates precancerous skin lesions.

J Clin Invest

January 2025

Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA.

The continuous rise in skin cancer incidence highlights an imperative for improved skin cancer prevention. Topical calcipotriol-plus-5-fluorouracil (calcipotriol-plus-5-FU) immunotherapy effectively eliminates precancerous skin lesions and prevents squamous cell carcinoma (SCC) in patients. However, its mechanism of action remains unclear.

View Article and Find Full Text PDF

Sensorineural hearing loss (SNHL) is characterized by a compromised cochlear perception of sound waves. Major risk factors for SNHL include genetic mutations, exposure to noise, ototoxic medications, and the aging process. Previous research has demonstrated that inflammation, oxidative stress, apoptosis, and autophagy, which are detrimental to inner ear cells, contribute to the pathogenesis of SNHL; however, the precise mechanisms remain inadequately understood.

View Article and Find Full Text PDF

The close interaction of mitochondrial fission and mitophagy, two crucial mechanisms, is key in the progression of myocardial ischemia-reperfusion (IR) injury. However, the upstream regulatory mechanisms governing these processes remain poorly understood. Here, we demonstrate a marked elevation in Nr4a1 expression following myocardial IR injury, which is associated with impaired cardiac function, heightened cardiomyocyte apoptosis, exacerbated inflammatory responses, and endothelial dysfunction.

View Article and Find Full Text PDF

Inhibiting autophagy selectively prunes dysfunctional tumor vessels and optimizes the tumor immune microenvironment.

Theranostics

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China.

Dysfunctional tumor vasculature, hypoxia, and an immunosuppressive microenvironment are significant barriers to effective cancer therapy. Autophagy, which is critical for maintaining cellular homeostasis and apoptosis resistance, is primarily triggered by hypoxia and nutrient deprivation, conditions prevalent in dysfunctional tumor vessels due to poor circulation. However, the role of autophagy in dysfunctional tumor endothelial cells and its impact on treatment and the tumor microenvironment (TME) remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!