We report the deposition of cubic copper nanoparticles (Cu NPs) of varying size and particle density on silicon laser-induced periodic surface structures via reactive laser ablation in liquid (RLAL) using intense femtosecond laser pulses. Two syntheses were compared: (1) simultaneous deposition, wherein a silicon wafer was laser-processed in aqueous Cu(NO) solution and (2) sequential deposition, wherein the silicon wafer was laser-processed in water and then exposed to aqueous Cu(NO). Only simultaneous deposition resulted in high Cu loading and cubic Cu NPs deposited on the surface. The solution pH, Cu(NO) concentration, and sample translation rate were varied to determine their effects on the size, morphology, and density of Cu NPs. Solution pH near ∼6.8 maximized Cu deposition. The Cu(NO) concentration affected the Cu NP morphology but not the size or Cu loading. The sample translation rate most significantly affected the Cu loading, particle size, and particle density. The observed synthesis parameter dependence of these Cu NP properties resembles results by electrodeposition to grow Cu NPs on silicon surfaces, which suggests that Cu NP deposition by RLAL follows a mechanism similar to electrodeposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c00238 | DOI Listing |
Sci Adv
January 2025
Institute of Energy, School of Earth and Space Sciences, Peking University, Beijing 100871, China.
The origins of natural hydrogen in natural gas systems of sedimentary basins and the capacity of these systems to store hydrogen remain inadequately understood, posing crucial questions for the large-scale exploration of natural hydrogen. This study reports on the natural gas composition, stable carbon and hydrogen isotopic values, and helium isotopic values of gas samples collected from the Qingshen gas deposit within volcanic rocks of the Songliao Basin. Natural hydrogen primarily originates from water radiolysis, water-rock interactions (WRI), and mantle.
View Article and Find Full Text PDFSci Rep
January 2025
Pacific Northwest National Laboratory, Richland, WA, USA.
Enewetak Atoll underwent 43 historical nuclear tests from 1948 to 1958, including the first hydrogen bomb test, resulting in a substantial nuclear material fallout contaminating the Atoll and the lagoon waters. The radionuclide fallout material deposited in lagoon sediments and soil on the islands will remain for decades to come. With intensifying climate and extreme weather events, the possibility of redistribution of deposited radionuclide material has become a great concern.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, Faculty of Natural Sciences, Kazakh National Women's Teacher Training University, Gogol 114/1, Almaty 050000, Kazakhstan.
This article presents the synthesis, electrophysical, and catalytic properties of a LaMnO-LaFeO nanocomposite material. The nanocomposite was synthesized via the sol-gel (Pechini) method. X-ray diffraction (XRD) analysis revealed a polycrystalline, biphasic perovskite structure combining both hexagonal and cubic symmetry.
View Article and Find Full Text PDFFood Chem
April 2025
Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, Republic of Korea. Electronic address:
Developing a highly efficient electrocatalyst for detecting hazardous bisphenol S (BPS) is essential to minimize health risks. Herein, we fabricate γ-FeO nanocubes (IONCs) anchored on carbon nanotube nanoribbons (CNRs) (denoted as IONCs-CNRs) for the electrochemical detection of BPS in vegetables. Importantly, the IONCs can be selectively formed only on CNRs via amperometric deposition, while γ-FeO cubic clusters (IOCCs) form in the absence of CNRs.
View Article and Find Full Text PDFACS Nano
January 2025
Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!