Possible role of purinergic signaling in COVID-19.

Mol Cell Biochem

Graduate Program in Biomedical Sciences, Medicine Course, Member of the Brazilian Purine Club, Federal University of Fronteira Sul, Fronteira Sul, Campus Chapecó, Rodovia SC 484 - Km 02, Chapecó, SC, 89815-899, Brazil.

Published: August 2021

The coronavirus disease (COVID-19), caused by SARS-CoV-2 infection, accounts for more than 2.4 million deaths worldwide, making it the main public health problem in 2020. Purinergic signaling is involved in the pathophysiology of several viral infections which makes the purinergic system a potential target of investigation in COVID-19. During viral infections, the ATP release initiates a cascade that activates purinergic receptors. This receptor activation enhances the secretion of pro-inflammatory cytokines and performs the chemotaxis of macrophages and neutrophils, generating an association between the immune and the purinergic systems. This review was designed to cover the possible functions of purinergic signaling in COVID-19, focusing on the possible role of purinergic receptors such as P2X7 which contributes to cytokine storm and inflammasome NLRP3 activation and P2Y1 that activates the blood coagulation pathway. The possible role of ectonucleotidases, such as CD39 and CD73, which have the function of dephosphorylating ATP in an immunosuppressive component, adenosine, are also covered in detail. Moreover, therapeutic combination or association possibilities targeting purinergic system components are also suggested as a possible useful tool to be tested in future researches, aiming to unveil a novel option to treat COVID-19 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973800PMC
http://dx.doi.org/10.1007/s11010-021-04130-4DOI Listing

Publication Analysis

Top Keywords

purinergic signaling
12
role purinergic
8
signaling covid-19
8
viral infections
8
purinergic system
8
purinergic receptors
8
purinergic
7
covid-19
5
covid-19 coronavirus
4
coronavirus disease
4

Similar Publications

Intra-abdominal sepsis is a life-threatening complex syndrome caused by microbes in the gut microbiota invading the peritoneal cavity. It is one of the major complications of intra-abdominal surgery. To date, only supportive therapies are available.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Background And Aim: Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood.

View Article and Find Full Text PDF

Adventures in translation.

Purinergic Signal

January 2025

Regenosine, LLC, Princeton, NJ, USA.

View Article and Find Full Text PDF

We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!