In the field of cell-based therapeutics, there is a great need for high-quality, robust, and validated measurements for cell characterization. Flow cytometry has emerged as a critically important platform due to its high-throughput capability and its ability to simultaneously measure multiple parameters in the same sample. However, to assure the confidence in measurement, well characterized biological reference materials are needed for standardizing clinical assays and harmonizing flow cytometric results between laboratories. To date, the lack of adequate reference materials, and the complexity of the cytometer instrumentation have resulted in few standards. This study was designed to evaluate CD19 expression in three potential biological cell reference materials and provide a preliminary assessment of their suitability to support future development of CD19 reference standards. Three commercially available human peripheral blood mononuclear cells (PBMCs) obtained from three different manufacturers were tested. Variables that could potentially contribute to the differences in the CD19 expression, such as PBMCs manufacturing process, number of healthy donors used in manufacturing each PBMC lot, antibody reagent, operators, and experimental days were included in our evaluation. CD19 antibodies bound per cell (ABC) values were measured using two flow cytometry-based quantification schemes with two independent calibration methods, a single point calibration using a CD4 reference cell and QuantiBrite PE bead calibration. Three lots of PBMC from three different manufacturers were obtained. Each lot of PBMC was tested on three different experimental days by three operators using three different lots of unimolar anti-CD19PE conjugates. CD19 ABC values were obtained in parallel on a selected lot of the PBMC samples using mass spectrometry (CyTOF) with two independent calibration methods, EQ4 and bead-based calibration were evaluated with CyTOF-technology. Including all studied variabilities such as PBMC lot, antibody reagent lot, and operator, the averaged mean values of CD19 ABC for the three PBMC manufacturers (A,B, and C) obtained by flow cytometry were found to be: 7953 with a %CV of 9.0 for PBMC-A, 10535 with a %CV of 7.8 for PBMC-B, and 12384 with a %CV of 16 for PBMC-C. These CD19 ABC values agree closely with the findings using CyTOF. The averaged mean values of CD19 ABC for the tested PBMCs is 9295 using flow cytometry-based method and 9699 using CyTOF. The relative contributions from various sources of uncertainty in CD19 ABC values were quantified for the flow cytometry-based measurement scheme. This uncertainty analysis suggests that the number of antigens or ligand binding sites per cell in each PBMC preparation is the largest source of variability. On the other hand, the calibration method does not add significant uncertainty to the expression estimates. Our preliminary assessment showed the suitability of the tested materials to serve as PBMC-based CD19+ reference control materials for use in quantifying relevant B cell markers in B cell lymphoproliferative disorders and immunotherapy. However, users should consider the variabilities resulting from different lots of PBMC and antibody reagent when utilizing cell-based reference materials for quantification purposes and perform bridging studies to ensure harmonization between the results before switching to a new lot.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978366PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248118PLOS

Publication Analysis

Top Keywords

cd19 abc
20
reference materials
16
abc values
16
antibody reagent
12
flow cytometry-based
12
cd19
9
three
9
reference
8
reference control
8
control materials
8

Similar Publications

Background: Natural infection or vaccination have provided robust immune defense against SARS-CoV-2 invasion, nevertheless, Omicron variants still successfully cause breakthrough infection, and the underlying mechanisms are poorly understood.

Methods: Sequential blood samples were continuously collected at different time points from 252 volunteers who were received the CanSino Ad5-nCoV (n= 183) vaccine or the Sinovac CoronaVac inactivated vaccine (n= 69). The anti-SARS-CoV-2 prototype and Omicron BA.

View Article and Find Full Text PDF

CD19-targeted chimeric antigen receptors (CAR) T cells are one of the most remarkable cellular therapies for managing B cell malignancies. However, long-term disease-free survival is still a challenge to overcome. Here, we evaluated the influence of different hinge, transmembrane (TM), and costimulatory CAR domains, as well as manufacturing conditions, cellular product type, doses, patient's age, and tumor types on the clinical outcomes of patients with B cell cancers treated with CD19 CAR T cells.

View Article and Find Full Text PDF

Background: Monocyte (m)HLA-DR expression appears to be a potent marker of immunosuppression in critically ill patients. The persistence of low mHLA-DR expression is associated with an increased risk of nosocomial infections and mortality. To adapt this measurement to pediatric requirements and provide extensive 24/7 access, we have developed a whole blood no-lyse no-wash micromethod (MM) and compared it with the standardized method (SM).

View Article and Find Full Text PDF

Lenalidomide overcomes the resistance to third-generation CD19-CAR-T cell therapy in preclinical models of diffuse large B-cell lymphoma.

Cell Oncol (Dordr)

August 2023

Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Purpose: Chimeric antigen receptor (CAR)-T cells against CD19 have been proven to be effective in treating B-cell hematological malignancies. However, the efficacy of this promising therapy is limited by many factors.

Methods: In this study, the germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) cell line OCI-Ly1, and patient-derived xenografted (PDX) mice (CY-DLBCL) were used as the CAR-T cell-resistant model.

View Article and Find Full Text PDF

Establishment and characterization of a new activated B-cell-like DLBCL cell line, TMD12.

Exp Hematol

December 2022

Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Laboratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.

We report the establishment of a novel activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) cell line, designated as TMD12, from a patient with highly refractory DLBCL. ABC-DLBCL is a subtype with a relatively unfavorable prognosis that was originally categorized using gene expression profiling according to its cell of origin. TMD12 cells were isolated from the pleural effusion of the patient at relapse and passaged continuously in vitro for >4 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!