The enveloped morbilliviruses utilise conserved proteinaceous receptors to enter host cells: SLAMF1 or Nectin-4. Receptor binding is initiated by the viral attachment protein Haemagglutinin (H), with the viral Fusion protein (F) driving membrane fusion. Crystal structures of the prototypic morbillivirus measles virus H with either SLAMF1 or Nectin-4 are available and have served as the basis for improved understanding of this interaction. However, whether these interactions remain conserved throughout the morbillivirus genus requires further characterisation. Using a random mutagenesis approach, based on error-prone PCR, we targeted the putative receptor binding site for SLAMF1 interaction on peste des petits ruminants virus (PPRV) H, identifying mutations that inhibited virus-induced cell-cell fusion. These data, combined with structural modelling of the PPRV H and ovine SLAMF1 interaction, indicate this region is functionally conserved across all morbilliviruses. Error-prone PCR provides a powerful tool for functionally characterising functional domains within viral proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290269 | PMC |
http://dx.doi.org/10.1099/jgv.0.001580 | DOI Listing |
J Biotechnol
January 2025
Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Promoters are crucial elements for controlling gene expression in cells, yet lactic acid bacteria (LAB) often lack a diverse set of available constitutive promoters with quantitative characterization. To enrich the LAB promoter library, this study focused on the known strong constitutive promoter P in LAB. Through error-prone PCR and dNTP analog-induced random mutagenesis, a library of 247 mutants of P was generated by using the red fluorescent protein (RFP) fluorescence intensity as a high-throughput screening indicator in Streptococcus thermophilus.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, USA.
Engineered monoclonal antibodies have proven to be highly effective therapeutics in recent viral outbreaks. However, despite technical advancements, an ability to rapidly adapt or increase antibody affinity and by extension, therapeutic efficacy, has yet to be fully realized. We endeavored to stand-up such a pipeline using molecular modeling combined with experimental library screening to increase the affinity of F5, a monoclonal antibody with potent neutralizing activity against Venezuelan Equine Encephalitis Virus (VEEV), to recombinant VEEV (IAB) E1E2 antigen.
View Article and Find Full Text PDFAnal Chem
January 2025
The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
CD28 is a costimulatory receptor that provides the second signal necessary for T-cell activation and is associated with diseases, including rheumatoid arthritis, asthma, and cancer. Targeting CD28 is crucial for both functional bioanalysis and therapeutic development. Molecular probes, particularly fluorescent probes, can enhance our understanding of CD28's cellular roles.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China. Electronic address:
Glutamate decarboxylases (GADs) can catalyze the conversion of l-glutamate to γ-aminobutyric acid (GABA), while consuming one H. However, the GADs found so far are catalytically active in the pHs of 3.8-5.
View Article and Find Full Text PDFRadiat Res
January 2025
Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!