This study aimed to evaluate the effect of a methoxylated fraction from Seub on myeloperoxidase (MPO)-chlorinating activity and subsequent assays for binding profile prediction. Therefore, the ethyl acetate extract of aerial parts from Seub was fractionated on open-column chromatography containing SiO and eluted with solvent in crescent polarity to yield a fraction with a mixture of flavonols quercetin 3--methyl ether () and 6-C-methyl quercetin 3--methyl ether (). Their chemical structures were proposed by HPLC coupled to photodiode array (HPLC-DAD) and mass spectrometer using electrospray ionization multistage analysis (HPLC-MS/MS). The fraction enriched with compounds and inhibited more efficiently the MPO-chlorinating activity (IC = 40 µg/mL) than the ethyl acetate extract (IC = 64.0 µg/mL). Molecular docking studies revealed that these compounds interact with MPO active pocket similarly to trifluoromethyl-substituted aromatic hydroxamate, a well-known MPO inhibitor, co-crystallized at the MPO binding site (PDB ID: 4C1M). Molecular dynamics trajectories confirmed that these two molecules interact with the MPO binding site with a similar energetic pattern when compared to the crystallographic ligand. Taken together, these data expand the sources of phenolic natural compounds that may be further investigated against inflammation-related diseases. Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2021.1900916 | DOI Listing |
J Mol Histol
December 2024
Complementary and Integrative Medicine, Department of Traditional, Ankara Yıldırım Beyazıt University, Ankara, Türkiye, Turkey.
It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes.
View Article and Find Full Text PDFMethods Protoc
December 2024
Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary.
An electrochemical investigation of 1,2- and 1,4-dihydroxybenzenes was carried out with platinum macro- and microelectrodes using square wave and cyclic voltammetry techniques. Furthermore, the effect of the two solvents-acetic acid and ethyl acetate-was compared. When using square wave voltammetry, signals only appeared at lower frequencies and only when the supporting electrolyte was in excess, as expected due to the relatively low permittivity of the used solvents.
View Article and Find Full Text PDFMar Drugs
November 2024
Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea.
, a salt-tolerant plant, has demonstrated antioxidant effects, the ability to prevent prostate enlargement, antifungal properties, and skin moisturizing benefits. This study aimed to explore the anti-melanogenic potential of the 70% ethanol extract of (TME) along with its ethyl acetate (TME-EA) and water (TME-A) fractions. TME (10-200 µg/mL), TME-EA (1-15 µg/mL), and TME-A (100-1000 µg/mL) were prepared and applied to B16F10 cells with or without α-MSH for 72 h.
View Article and Find Full Text PDFNat Prod Res
December 2024
National Institute of Agronomic Research of Algeria, Station of Sidi Mehdi, Touggourt, Algeria.
Mushrooms have proven to be a valuable source of diverse bioactive compounds that can hold substantial potential for preventing and managing various diseases. This research focused on examining the numerous bioactive compounds found in () (Cooke & Massee) Priest mushrooms, particularly those obtained from ethyl acetate and dichloromethane extracts. Polyphenols, flavonoids, tannins, and alkaloids were also evaluated by chemical analysis.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Department of Physiology, Faculty of Medicine Gonabad University of Medical Sciences Gonabad Iran.
Acetaminophen (APAP) is a well-known drug that, in high doses, induces hepatotoxicity and nephrotoxicity. This study has investigated the preventive effect of the extract and fractions of on APAP-induced liver and kidney damage. In this experiment, after analysis of the extract using FTIR, toxicity was induced by APAP on the 7th day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!