A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical response of different types of surface texture for medical application using finite element study. | LitMetric

Mechanical response of different types of surface texture for medical application using finite element study.

Proc Inst Mech Eng H

Department of Mechanical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, Chennai, TN, India.

Published: June 2021

Titanium implants are commonly used in dental and other joint replacements and its several modifications have been taken place to improve the adhesion between bone and implant. Different chemical and physical modifications are generally applied to the titanium surface for improving interlocking between bone and implant materials. The present work has been investigated the shear strength stiffness and stress concentration between Representative Volume Element (RVE) model and coating material while the surface of the RVE model modified with different types of surface textures. The surface topology parameters resulted a significant increase in shear strength by 55% and 45% for straight texture and U-shape texture, respectively compared with plain surface. The stiffness reduced significantly by 18% for U-shape and but to 36% only for X-shape, when compared with plain surface. The stress concentration factor in biaxial case both dome shape and X-shape has 45%and 25% in U-shape lower than that of the plain surface. Therefore, this investigation predicted the interfacial shear strength properties generated for different surface topologies to determine the bonding behavior of the implant materials.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09544119211002722DOI Listing

Publication Analysis

Top Keywords

shear strength
12
plain surface
12
surface
9
types surface
8
bone implant
8
implant materials
8
stress concentration
8
rve model
8
compared plain
8
mechanical response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!