Direct laser writing (DLW) via two-photon polymerization is an emerging highly precise technique for the fabrication of intricate cellular scaffolds. Despite recent progress in using two-photon-polymerized scaffolds to probe fundamental cell behaviors, new methods to direct and modulate microscale cell alignment and selective cell adhesion using two-photon-polymerized microstructures are of keen interest. Here, a DLW-fabricated 2D and 3D hydrogel microstructures, with alternating soft and stiff regions, for precisely controlled cell alignment are reported. The use of both cell-adhesive and cell-repellent hydrogels allows selective adhesion and alignment of human mesenchymal stem cells within the printed structure. Importantly, DLW patterning enables cell alignment on flat surfaces as well as irregular and curved 3D microstructures, which are otherwise challenging to pattern with cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202100051 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.
View Article and Find Full Text PDFmBio
January 2025
Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.
Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).
Natl Sci Rev
February 2025
Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China.
Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells.
View Article and Find Full Text PDFLife Med
December 2024
Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
Proper chromosome alignment at the spindle equator is a prerequisite for accurate chromosome segregation during cell division. However, the chromosome movement trajectories prior to alignment remain elusive. Here, we established a 4D imaging analysis framework to visualize chromosome dynamics and develop a deep-learning model for chromosome movement trajectory classification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!