Purpose: To present a reproducible methodology for building an anatomy mimicking phantom with targeted T and T contrast for use in quantitative magnetic resonance imaging.
Methods: We propose a reproducible method for creating high-resolution, quantitative slice phantoms. The phantoms are created using gels with different concentrations of NiCl and MnCl to achieve targeted T and T values. We describe a calibration method for accurately targeting anatomically realistic relaxation pairs. In addition, we developed a method of fabricating slice phantoms by extruding 3D printed walls on acrylic sheets. These procedures are combined to create a physical analog of the Brainweb digital phantom.
Results: With our method, we are able to target specific T /T values with less than 10% error. Additionally, our slice phantoms look realistic since their geometries are derived from anatomical data.
Conclusion: Standardized and accurate tools for validating new techniques across sequences, platforms, and different imaging sites are important. Anatomy mimicking, multi-contrast phantoms designed with our procedures could be used for evaluating, testing, and verifying model-based methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240669 | PMC |
http://dx.doi.org/10.1002/mrm.28740 | DOI Listing |
Radiat Environ Biophys
January 2025
Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat, Morocco.
This study assesses radiation doses in multi-slice computed tomography (CT) using epoxy resin and PMMA phantoms, focusing on the relationship between TAR (tissue air ratio) and kilovoltage peak (kVp). The research was conducted using a Hitachi Supria 16-slice CT scanner. An epoxy resin phantom was fabricated from commercially available materials, to simulate human tissue.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden.
Background: Modern reconstruction algorithms for computed tomography (CT) can exhibit nonlinear properties, including non-stationarity of noise and contrast dependence of both noise and spatial resolution. Model observers have been recommended as a tool for the task-based assessment of image quality (Samei E et al., Med Phys.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
Jpn J Radiol
December 2024
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Kyoto, 6068507, Japan.
Purpose: To compare quantitative values and image quality between single-shot echo-planar imaging (SS-EPI) diffusion-weighted imaging (DWI) and two-dimensional turbo gradient- and spin-echo DWI with non-Cartesian BLADE trajectory (TGSE-BLADE DWI) in patients with epidermoid cyst.
Methods: Patients with epidermoid cyst who underwent both SS-EPI DWI and TGSE-BLADE DWI were included in this study. Two raters placed ROIs encircling the entire epidermoid cyst on SS-EPI DWI, and then on TGSE-BLADE DWI.
Tomography
December 2024
Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan.
Objectives: We evaluated the noise reduction effects of deep learning reconstruction (DLR) and hybrid iterative reconstruction (HIR) in brain computed tomography (CT).
Methods: CT images of a 16 cm dosimetry phantom, a head phantom, and the brains of 11 patients were reconstructed using filtered backprojection (FBP) and various levels of DLR and HIR. The slice thickness was 5, 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!