This research provides the first in-depth analysis of fine-scale grizzly bear habitat selection and movement patterns in response to the linear footprints cleared for below-ground pipelines in Alberta. Using an extensive set of GPS location data from collared grizzly bears, we were able to determine that grizzly bears selected for younger pipelines (mean age since last construction~6.5 years), which are known to have a greater abundance of important bear foods. Bears also selected for wider corridors that were disturbed for construction more than once. During the spring season, sex/age class was an important predictor of grizzly bear use of pipelines, with adult female bears more likely to use these features than other sex/age classes. Examination of movement patterns revealed that pipeline density influenced grizzly bears' movement rates and path straightness, particularly in the spring, when bears moved more slowly and movement paths were more tortuous in areas with higher pipeline densities. These movement patterns are consistent with foraging behavior and further indicate that bears are not exhibiting avoidance behaviors or displacement by pipeline features, and pipelines may be functioning as seasonally important foraging areas for grizzly bears in Alberta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00267-021-01457-y | DOI Listing |
Ecology
January 2025
Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.
Understanding the patterns and drivers of species range shifts is essential to disentangle mechanisms driving species' responses to global change. Here, we quantified local extinction and colonization dynamics of giant pandas (Ailuropoda melanoleuca) using occurrence data collected by harnessing the labor of >1000 workers and >60,000 worker days for each of the three periods (TP1: 1985-1988, TP2: 1998-2002, and TP3: 2011-2014), and evaluated how these patterns were associated with (1) protected area, (2) local rarity/abundance, and (3) abiotic factors (i.e.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.
View Article and Find Full Text PDFHibernating brown bears, due to a drastic reduction in metabolic rate, show only moderate muscle wasting. Here, we evaluate if ATPase activity of resting skeletal muscle myosin can contribute to this energy sparing. By analyzing single muscle fibers taken from the same bears, either during hibernation or in summer, we find that fibers from hibernating bears have a mild decline in force production and a significant reduction in ATPase activity.
View Article and Find Full Text PDFParasit Vectors
December 2024
Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China.
Background: Babesia is a tick-borne protozoan blood parasite that can cause hemolytic anemia, thrombocytopenia, lethargy and splenomegaly in giant pandas.
Methods: We evaluated the efficacy and safety profile of a therapeutic regimen combining atovaquone and zithromycin in the context of babesiosis in giant pandas that have been naturally infected. The examined pandas underwent clinical and laboratory analyses, including hematology, biochemistry and thyroid hormone profiles.
J Zoo Wildl Med
December 2024
Zoological Pathology Program, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Brookfield, IL 60513, USA.
Red pandas () are endangered with extinction due to deforestation and habitat fragmentation. Reported causes of unexpected death in managed red pandas include kidney, liver, gastrointestinal, and cardiac disease. A previously undetailed syndrome, red panda peracute mortality syndrome, may be emerging, as red pandas have died unexpectedly, with no clear cause of death identified at necropsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!