Adrenergic tone benefits cardiac performance and warming tolerance in two teleost fishes that lack a coronary circulation.

J Comp Physiol B

Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Gothenburg, Sweden.

Published: July 2021

AI Article Synopsis

  • Tolerance to environmental warming in fish depends on heart function and oxygen delivery, but cardiac performance often declines at higher temperatures.
  • Previous studies have shown mixed results on how autonomic regulation impacts heart function during warming, especially in fish without coronary arteries.
  • This research indicates that adrenergic stimulation supports cardiac performance and enhances thermal tolerance in perch, while cholinergic blockade does not appear to influence this relationship.

Article Abstract

Tolerance to acute environmental warming in fish is partly governed by the functional capacity of the heart to increase systemic oxygen delivery at high temperatures. However, cardiac function typically deteriorates at high temperatures, due to declining heart rate and an impaired capacity to maintain or increase cardiac stroke volume, which in turn has been attributed to a deterioration of the electrical conductivity of cardiac tissues and/or an impaired cardiac oxygen supply. While autonomic regulation of the heart may benefit cardiac function during warming by improving myocardial oxygenation, contractility and conductivity, the role of these processes for determining whole animal thermal tolerance is not clear. This is in part because interpretations of previous pharmacological in vivo experiments in salmonids are ambiguous and were confounded by potential compensatory increases in coronary oxygen delivery to the myocardium. Here, we tested the previously advanced hypothesis that cardiac autonomic control benefits heart function and acute warming tolerance in perch (Perca fluviatilis) and roach (Rutilus rutilus); two species that lack coronary arteries and rely entirely on luminal venous oxygen supplies for cardiac oxygenation. Pharmacological blockade of β-adrenergic tone lowered the upper temperature where heart rate started to decline in both species, marking the onset of cardiac failure, and reduced the critical thermal maximum (CT) in perch. Cholinergic (muscarinic) blockade had no effect on these thermal tolerance indices. Our findings are consistent with the hypothesis that adrenergic stimulation improves cardiac performance during acute warming, which, at least in perch, increases acute thermal tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241749PMC
http://dx.doi.org/10.1007/s00360-021-01359-9DOI Listing

Publication Analysis

Top Keywords

thermal tolerance
12
cardiac
10
cardiac performance
8
warming tolerance
8
lack coronary
8
oxygen delivery
8
high temperatures
8
cardiac function
8
heart rate
8
acute warming
8

Similar Publications

The evolution of precursors to form secondary organic aerosol (SOA) is still a challenge in atmospheric chemistry. Chamber experiments were conducted to simulate the ambient OH oxidation of naphthalene and α-pinene, which are typical markers of anthropogenic and biogenic emissions. Particulate matters were sampled by quartz filters and were analyzed by comprehensive two-dimensional gas chromatography (GC×GC) coupled with a thermal desorption system (TD) and a mass spectrometer (MS).

View Article and Find Full Text PDF

Background: High-temperature environment can cause acute kidney injury affecting renal filtration function. To study the mechanism of renal injury caused by heat stress through activates TLR4/NF-κB/NLRP3 signaling pathway by disrupting the filtration barrier in broiler chickens. The temperature of broilers in the TN group was maintained at 23 ± 1 °C, and the HS group temperature was maintained at 35 ± 1℃ from the age of 21 days, and the high temperature was 10 h per day, and one broiler from each replicate group at the age of 35 and 42 days was selected for blood sampling, respectively.

View Article and Find Full Text PDF

Fungi associated with orange juice production and assessment of adhesion ability and resistance to sanitizers.

Int J Food Microbiol

December 2024

Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil. Electronic address:

Orange juice is widely consumed worldwide due to its sensory and nutritional characteristics. This beverage is susceptible to contamination by acidic-tolerant microorganisms due to its low pH, especially filamentous fungi and yeasts. To minimize fungal spoilage, companies usually submit juice to thermal treatments; sanitizers are also applied on surfaces to maintain the microbiological quality.

View Article and Find Full Text PDF

Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms.

View Article and Find Full Text PDF

Insights from a year of field deployments inform the conservation of an endangered estuarine fish.

Conserv Physiol

December 2024

U.S. Bureau of Reclamation Bay-Delta Office, 801 I St., Suite 140, Sacramento, CA 95814, USA.

Freshwater fishes are increasingly facing extinction. Some species will require conservation intervention such as habitat restoration and/or population supplementation through mass-release of hatchery fish. In California, USA, a number of conservation strategies are underway to increase abundance of the endangered Delta Smelt (); however, it is unclear how different estuarine conditions influence hatchery fish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!