The fruits of various pepper cultivars are characterized by a different color, which is determined by the pigment ratio; carotenoids dominate in ripe fruits, while chlorophylls, in immature fruits. A key regulator of carotenoid biosynthesis is the phytoene synthase encoded by the PSY gene. The Capsicum annuum genome contains two isoforms of this enzyme, localized in leaf (PSY2) and fruit (PSY1) plastids. In this work, the complete PSY1 and PSY2 genes were identified in nine C. annuum cultivars, which differ in ripe fruit color. PSY1 and PSY2 sequence variability was 2.43 % (69 SNPs) and 1.21 % (36 SNPs). The most variable were PSY1 proteins of the cultivars 'Maria' (red-fruited) and 'Sladkij shokolad' (red-brown-fruited). All identified PSY1 and PSY2 homologs contained the phytoene synthase domain HH-IPPS and the transit peptide. In the PSY1 and PSY2 HH-IPPS domains, functionally significant sites were determined. For all accessions studied, the active sites (YAKTF and RAYV), aspartate-rich substrate-Mg-binding sites (DELVD and DVGED), and other functional residues were shown to be conserved. Transit peptides were more variable, and their similarity in the PSY1 and PSY2 proteins did not exceed 78.68 %. According to the biochemical data obtained, the largest amounts of chlorophylls and carotenoids across the cultivars studied were detected in immature and ripe fruits of the cv. 'Sladkij shokolad' and 'Shokoladnyj'. Also, ripe fruits of the cv. 'Nesozrevayuschij' (green-fruited) were marked by significant chlorophyll content, but a minimum of carotenoids. The PSY1 and PSY2 expression patterns were determined in the fruit pericarp at three ripening stages in 'Zheltyj buket', 'Sladkij shokolad', 'Karmin' and 'Nesozrevayuschij', which have different ripe fruit colors: yellow, red-brown, dark red and green, respectively. In the leaves of the cultivars studied, PSY1 expression levels varied significantly. All cultivars were characterized by increased PSY1 transcription as the fruit ripened; the maximum transcription level was found in the ripe fruit of 'Sladkij shokolad', and the lowest, in 'Nesozrevayuschij'. PSY2 transcripts were detected not only in the leaves and immature fruits, but also in ripe fruits. Assessment of a possible correlation of PSY1 and PSY2 transcription with carotenoid and chlorophyll content revealed a direct relationship between PSY1 expression level and carotenoid pigmentation during fruit ripening. It has been suggested that the absence of a typical pericarp pigmentation pattern in 'Nesozrevayuschij' may be associated with impaired chromoplast formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960444 | PMC |
http://dx.doi.org/10.18699/VJ20.663 | DOI Listing |
3 Biotech
May 2024
Department of Molecular Biology and Biotechnology, College of Agriculture (Kerala Agricultural University), Vellayani, Thiruvananthapuram, Kerala 695 522 India.
Unlabelled: (BBrMV) infection results in characteristic reddish streaks on pseudostem and chlorotic spindle lesions on leaves leading to traveler's palm appearance and complete crop loss depending on the stage of infection in banana plants. Here, we discuss the influence of colonization (a beneficial fungal root endophyte) on BBrMV infection, specific viral component genes responsible for symptom development, chlorophyll and carotenoid biosynthesis, and degradation in BBrMV-infected banana plants. colonization significantly and substantially reduced the severity of Banana bract mosaic disease (BBrMD) in addition to increased growth, development and yield of banana plants.
View Article and Find Full Text PDFPlant Physiol
October 2023
Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia 46022, Spain.
Carotenoids are plastidial isoprenoids required for photoprotection and phytohormone production in all plants. In tomato (Solanum lycopersicum), carotenoids also provide color to flowers and ripe fruit. Phytoene synthase (PSY) catalyzes the first and main flux-controlling step of the carotenoid pathway.
View Article and Find Full Text PDFNew Phytol
September 2023
Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain.
Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3).
View Article and Find Full Text PDFHortic Res
June 2022
Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA.
Lycopene content in tomato fruit is largely under genetic control and varies greatly among genotypes. Continued improvement of lycopene content in elite varieties with conventional breeding has become challenging, in part because little is known about the underlying molecular mechanisms in high-lycopene tomatoes (HLYs). We collected 42 HLYs with different genetic backgrounds worldwide.
View Article and Find Full Text PDFFront Plant Sci
February 2022
Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
The accumulation of the red carotenoid pigment lycopene in tomato () fruit is achieved by increased carotenoid synthesis during ripening. The first committed step that determines the flux in the carotenoid pathway is the synthesis of phytoene catalyzed by phytoene synthase (PSY). Tomato has three genes that are differentially expressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!