Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI)-anchored protein expressed on primitive hematopoietic stem cells, activated platelets, CD4 and CD8 T cells, and keratinocytes. In recent years, CD109 was also associated with different tumor entities and identified as a possible future diagnostic marker linked to reduced patient survival. Also, different cell signaling pathways were proposed as targets for CD109 interference including the TGFβ, JAK-STAT3, YAP/TAZ, and EGFR/AKT/mTOR pathways. Here, we identify the metalloproteinase meprin β to cleave CD109 at the cell surface and thereby induce the release of cleavage fragments of different size. Major cleavage was identified within the bait region of CD109 residing in the middle of the protein. To identify the structural localization of the bait region, homology modeling and single-particle analysis were applied, resulting in a molecular model of membrane-associated CD109, which allows for the localization of the newly identified cleavage sites for meprin β and the previously published cleavage sites for the metalloproteinase bone morphogenetic protein-1 (BMP-1). Full-length CD109 localized on extracellular vesicles (EVs) was also identified as a release mechanism, and we can show that proteolytic cleavage of CD109 at the cell surface reduces the amount of CD109 sorted to EVs. In summary, we identified meprin β as the first membrane-bound protease to cleave CD109 within the bait region, provide a first structural model for CD109, and show that cell surface proteolysis correlates negatively with CD109 released on EVs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960916PMC
http://dx.doi.org/10.3389/fcell.2021.622390DOI Listing

Publication Analysis

Top Keywords

cell surface
16
cd109
13
cd109 cell
12
bait region
12
extracellular vesicles
8
cleave cd109
8
cleavage sites
8
cell
5
identified
5
cleavage
5

Similar Publications

Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.

View Article and Find Full Text PDF

Introduction: This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD).

Methods: Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications.

View Article and Find Full Text PDF

Application of biomass carbon dots in food packaging.

Environ Sci Pollut Res Int

January 2025

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.

View Article and Find Full Text PDF

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

Design and implication of a breast cancer-targeted drug delivery system utilizing the Kisspeptin/GPR54 system.

Int J Pharm

January 2025

Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:

Kisspeptins function as endogenous ligands for the G protein-coupled receptor GPR54. While the primary role of the Kisspeptin/GPR54 signaling pathway pertains to reproduction, several studies have shown that GPR54 is highly expressed in breast cancer, and we further confirmed this result that GPR54 expression is significantly upregulated in breast cancer cells. Based on this finding, we developed a liposomal drug delivery system utilizing the Kisspeptin/GPR54 system to treat breast cancer after confirming the safety of Kp-10-228.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!