It is still a challenge to optimize the component distribution and microporous structures in scaffolds for tailoring biodegradation (ion releasing) and enhancing bone defect repair within an expected time stage. Herein, the core-shell-typed nonstoichiometric wollastonite (4% and 10% Mg-doping calcium silicate; CSiMg4, CSiMg10) macroporous scaffolds with microporous shells (adding ∼10 μm PS microspheres into shell-layer slurry) were fabricated via 3D printing. The initial mechanical properties and bio-dissolution (ion releasing) , and osteogenic capacity of the bioceramic scaffolds were evaluated systematically. It was shown that endowing high-density micropores in the sparingly dissolvable CSiMg10 or dissolvable CSiMg4 shell layer inevitably led to nearly 30% reduction of compressive strength, but such micropores could readily tune the ion release behaviour of the scaffolds (CSiMg4@CSiMg10 vs. CSiMg4@CSiMg10-p; CSiMg10@CSiMg4 vs. CSiMg10@CSiMg4-p). Based on the in rabbit femoral bone defect repair model, the 3D μCT reconstruction and histological observation demonstrated that the CSiMg4@CSiMg10-p scaffolds displayed markedly higher osteogenic capability than the other scaffolds after 12 weeks of implantation. It demonstrated that core-shell bioceramic 3D printing technique can be developed to fabricate single-phase or biphasic bioactive ceramic scaffolds with accurately tailored filament biodegradation for promoting bone defect regeneration and repair in some specific pathological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955715PMC
http://dx.doi.org/10.1093/rb/rbab007DOI Listing

Publication Analysis

Top Keywords

bone defect
16
scaffolds
8
bioceramic scaffolds
8
defect regeneration
8
regeneration repair
8
ion releasing
8
defect repair
8
tuning filament
4
filament composition
4
composition microstructure
4

Similar Publications

Background: Knee injuries resulting in purely cartilaginous defects are rare, and controversy remains regarding the reliability of chondral-only fixation.

Purpose: To systematically review the literature for fixation methods and outcomes after primary fixation of chondral-only defects within the knee.

Study Design: Systematic review; Level of evidence, 5.

View Article and Find Full Text PDF

Comparative Analysis of Gelatin/Polylactic Acid and Commercial PLA Membranes for Guided Bone Regeneration: A Randomized Clinical Trial.

Med Sci Monit

January 2025

Department of Oral Implantology, The Affiliated Stomatology Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, Jiangxi, China.

BACKGROUND This study included 32 patients with single missing teeth and alveolar bone defects and aimed to compare outcomes from guided bone regeneration with a gelatin/polylactic acid (GT/PLA) barrier membrane and a Guidor® bioresorbable matrix barrier dental membrane. MATERIAL AND METHODS A total of 32 participants were recruited in the clinical study, with single missing teeth and alveolar bone defects, requiring guided bone regeneration (32 missing teeth in total). They were randomly divided into the GT/PLA membrane group (experimental) and Guidor® membrane group (control) by the envelope method (n=16).

View Article and Find Full Text PDF

Introduction: Soft-tissue defect is commonly seen in immediate maxillary posterior implantation because of tooth extraction wound and tension from bone graft. Bone graft materials exposure has a significant detrimental influence on bone augmentation. However, previous studies lack sufficient evidence to guide wound closure after immediate posterior implantation.

View Article and Find Full Text PDF

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!