Cell-material interactions during early osseointegration of the bone-implant interface are critical and involve crosstalk between osteoblasts and osteoclasts. The surface properties of titanium implants also play a critical role in cell-material interactions. In this study, femtosecond laser treatment and sandblasting were used to alter the surface morphology, roughness and wettability of a titanium alloy. Osteoblasts and osteoclasts were then cultured on the resulting titanium alloy disks. Four disk groups were tested: a polished titanium alloy (pTi) control; a hydrophilic micro-dislocation titanium alloy (sandblasted Ti (STi)); a hydrophobic nano-mastoid Ti alloy (femtosecond laser-treated Ti (FTi)); and a hydrophilic hierarchical hybrid micro-/nanostructured Ti alloy [femtosecond laser-treated and sandblasted Ti (FSTi)]. The titanium surface treated by the femtosecond laser and sandblasting showed higher biomineralization activity and lower cytotoxicity in simulated body fluid and lactate dehydrogenase assays. Compared to the control surface, the multifunctional titanium surface induced a better cellular response in terms of proliferation, differentiation, mineralization and collagen secretion. Further investigation of macrophage polarization revealed that increased anti-inflammatory factor secretion and decreased proinflammatory factor secretion occurred in the early response of macrophages. Based on the above results, the synergistic effect of the surface properties produced an excellent cellular response at the bone-implant interface, which was mainly reflected by the promotion of early ossteointegration and macrophage polarization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955712 | PMC |
http://dx.doi.org/10.1093/rb/rbab006 | DOI Listing |
Heliyon
January 2025
Institute of Energy Engineering, Dhaka University of Engineering & Technology, Gazipur, Bangladesh.
This study investigates the optimization of cutting conditions for machining titanium alloy (Ti-6Al-4V) using Response Surface Methodology (RSM), with the goal of minimizing tool-chip interface temperature and surface roughness. The research focuses on key cutting parameters to investigate the most effective combinations for enhancing surface finish and reducing thermal impact during machining. The present study deals with the dry turning of Ti-6Al-4V alloy with carbide alloy inserts in a way to utilize the Analysis of Variance (ANOVA) to develop predictive models for minimum surface roughness and optimum temperature.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFInt J Implant Dent
January 2025
School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.
View Article and Find Full Text PDFJ Conserv Dent Endod
November 2024
Department of Metallurgical and Materials Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India.
Objective: The present study aimed to evaluate the phase transformation behavior and elemental analysis of thermomechanical-treated nickel-titanium (NiTi) rotary instruments, TruNatomy (Dentsply Sirona), HyFlex CM (coltene, Whaledent), and Neoendo Flex (Orikam healthcare India), using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry.
Materials And Methods: A total of 18 NiTi rotary instruments, TruNatomy, Hyflex CM, Neoendo Flex, taper. 04, size 25 (except TruNatomy, size 26) were selected and were divided into three groups ( = 6).
Micromachines (Basel)
December 2024
Institute for Advanced Manufacturing (KSF), Furtwangen University, 78532 Tuttlingen, Germany.
This study evaluates the effects of laser parameters on the surface remelting of the Ti-3Al-2.5V alloy. A ms-laser equipped with a coaxial gas-pressure head integrated into a Swiss-type turning machine is used for the laser remelting process of cylindrical parts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!