Gene-activated matrix (GAM) has a potential usefulness in bone engineering as an alternate strategy for the lasting release of osteogenic proteins but efficient methods to generate non-viral GAM remain to be established. In this study, we investigated whether an atelocollagen-based GAM containing naked-plasmid () DNAs encoding microRNA (miR) 20a, which may promote osteogenesis via multiple pathways associated with the osteogenic differentiation of mesenchymal stem/progenitor cells (MSCs), facilitates rat cranial bone augmentation. First, we confirmed the osteoblastic differentiation functions of generated DNA encoding miR20a (miR20a) , and its transfection regulated the expression of several of target genes, such as Bambi1 and PPARγ, in rat bone marrow MSCs and induced the increased expression of BMP4. Then, when GAMs fabricated by mixing 100 μl of 2% bovine atelocollagen, 20 mg β-TCP granules and 0.5 mg (3.3 μg/μl) AcGFP plasmid-vectors encoding miR20a were transplanted to rat cranial bone surface, the promoted vertical bone augmentation was clearly recognized up to 8 weeks after transplantation, as were upregulation of VEGFs and BMP4 expressions at the early stages of transplantation. Thus, GAM-based miR delivery may provide an alternative non-viral approach by improving transgene efficacy via a small sequence that can regulate the multiple pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955717PMC
http://dx.doi.org/10.1093/rb/rbaa060DOI Listing

Publication Analysis

Top Keywords

rat cranial
12
cranial bone
12
bone augmentation
12
gene-activated matrix
8
multiple pathways
8
encoding mir20a
8
bone
6
matrix harboring
4
harboring mir20a-expressing
4
mir20a-expressing plasmid
4

Similar Publications

Regeneration of diabetic bone defects remains a formidable challenge due to the chronic hyperglycemic state, which triggers the accumulation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To address this issue, we have engineered a bimetallic metal-organic framework-derived Mn@CoO@Pt nanoenzyme loaded with alendronate and Mg ions (termed MCPtA) to regulate the hyperglycemic microenvironment and recover the osteogenesis/osteoclast homeostasis. Notably, the Mn atom substitution in the CoO nanocrystalline structure could modulate the electronic structure and significantly improve the SOD/CAT catalytic activity for ROS scavenging.

View Article and Find Full Text PDF

Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.

View Article and Find Full Text PDF

Identifying the appropriate measurement environment for laser speckle flowmetry of cerebral blood flow in rats.

Brain Res

January 2025

Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.

Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.

View Article and Find Full Text PDF

This study aims to investigate and compare the effects of short and long-term application of low-level laser therapy on the mandibular alveolar process of osteoporotic rats. Forty adult male albino rats were included in this study. After animal grouping, the experimental group received dexamethasone (0.

View Article and Find Full Text PDF

Background: Yes-associated protein (YAP) is a crucial mechanosensor involved in mechanotransduction, but its role in regulating mechanical force-induced bone remodeling during orthodontic tooth movement (OTM) is unclear. This study aims to elucidate the relationship between mechanotransduction and mechanical force-induced alveolar bone remodeling during OTM.

Results: Our study confirms an asynchronous (temporal and spatial sequence) remodeling pattern of the alveolar bone under mechanical force during OTM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!