AI Article Synopsis

  • - Cell therapy, particularly using directly reprogrammed neural precursor cells (drNPC), shows promise for reducing brain damage and improving recovery after a stroke, as tested in a rat model.
  • - The study involved infusing drNPC into the bloodstream of rats 24 hours post-stroke, allowing tracking of these cells via MRI; results indicated that drNPC were present near and within the infarct zone more quickly than the control group of placenta-derived mesenchymal stem cells (pMSC).
  • - Both drNPC and pMSC improved neurological function and reduced stroke effects, but they acted differently in terms of infarct volume and animal survival, hinting at unique therapeutic mechanisms at play, particularly for drNPC.

Article Abstract

Cell therapy is an emerging approach to stroke treatment with a potential to limit brain damage and enhance its restoration after the acute phase of the disease. In this study we tested directly reprogrammed neural precursor cells (drNPC) derived from adult human bone marrow cells in the rat middle cerebral artery occlusion (MCAO) model of acute ischemic stroke using human placenta mesenchymal stem cells (pMSC) as a positive control with previously confirmed efficacy. Cells were infused into the ipsilateral (right) internal carotid artery of male Wistar rats 24 h after MCAO. The main goal of this work was to evaluate real-time distribution and subsequent homing of transplanted cells in the brain. This was achieved by performing intra-arterial infusion directly inside the MRI scanner and allowed transplanted cells tracing starting from their first pass through the brain vessels. Immediately after transplantation, cells were observed in the periphery of the infarct zone and in the brain stem, 15 min later small numbers of cells could be discovered deep in the infarct core and in the contralateral hemisphere, where drNPC were seen earlier and in greater numbers than pMSC. Transplanted cells in both groups could no longer be detected in the rat brain 48-72 h after infusion. Histological and histochemical analysis demonstrated that both the drNPC and pMSC were localized inside blood vessels in close contact with the vascular wall. No passage of labeled cells through the blood brain barrier was observed. Additionally, the therapeutic effects of drNPC and pMSC were compared. Both drNPC and pMSC induced substantial attenuation of neurological deficits evaluated at the 7th and 14th day after transplantation using the modified neurological severity score (mNSS). Some of the effects of drNPC and pMSC, such as the influence on the infarct volume and the survival rate of animals, differed. The results suggest a paracrine mechanism of the positive therapeutic effects of IA drNPC and pMSC infusion, potentially enhanced by the cell-cell interactions. Our data also indicate that the long-term homing of transplanted cells in the brain is not necessary for the brain's functional recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960930PMC
http://dx.doi.org/10.3389/fnins.2021.641970DOI Listing

Publication Analysis

Top Keywords

transplanted cells
20
drnpc pmsc
20
cells
12
effects drnpc
12
starting pass
8
brain
8
pass brain
8
homing transplanted
8
cells brain
8
therapeutic effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!