Many observational studies and some randomized trials demonstrate how fetal growth can be influenced by environmental insults (for example, maternal infections) and preventive interventions (for example, multiple-micronutrient supplementation) that can have a long-lasting effect on health, growth, neurodevelopment and even educational attainment and income in adulthood. In a cohort of pregnant women (n = 3,598), followed-up between 2012 and 2019 at six sites worldwide, we studied the associations between ultrasound-derived fetal cranial growth trajectories, measured longitudinally from <14 weeks' gestation, against international standards, and growth and neurodevelopment up to 2 years of age. We identified five trajectories associated with specific neurodevelopmental, behavioral, visual and growth outcomes, independent of fetal abdominal growth, postnatal morbidity and anthropometric measures at birth and age 2. The trajectories, which changed within a 20-25-week gestational age window, were associated with brain development at 2 years of age according to a mirror (positive/negative) pattern, mostly focused on maturation of cognitive, language and visual skills. Further research should explore the potential for preventive interventions in pregnancy to improve infant neurodevelopmental outcomes before the critical window of opportunity that precedes the divergence of growth at 20-25 weeks' gestation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613323PMC
http://dx.doi.org/10.1038/s41591-021-01280-2DOI Listing

Publication Analysis

Top Keywords

fetal cranial
8
cranial growth
8
growth trajectories
8
growth neurodevelopment
8
growth
5
fetal
4
trajectories associated
4
associated growth
4
neurodevelopment years
4
years age
4

Similar Publications

Background: Operative delivery is a technique used during vaginal or cesarean birth to facilitate the patient's labor course through the assistance of a vacuum extractor. This method is increasingly used compared with forceps. This study aimed to investigate the forced effects of vacuum extractors comprising vacuum cups with different thicknesses on the fetal head and the vacuum extractor during vacuum-assisted delivery and to determine the optimal thickness for reducing the failure rate and minimizing neonatal and maternal morbidity.

View Article and Find Full Text PDF

Anatomic Approach to Fetal Hydrocephalus.

Radiographics

February 2025

From the Departments of Radiology and Imaging Sciences (A.M.G., P.J.W., A.M.K.) and Obstetrics and Gynecology (S.E.D.), University of Utah Health, 30 N Mario Capecchi Dr, Salt Lake City, UT 84112; and University of Utah School of Medicine, Salt Lake City, Utah (J.N.C.).

Hydrocephalus is an imprecise term and refers to the imbalance of brain parenchyma and cerebral spinal fluid in the cranial vault. Ventriculomegaly, or enlargement of the ventricular system, is often the more precise term and is therefore preferred. Appropriate imaging and measurement techniques are critical to detect ventriculomegaly and grade its severity.

View Article and Find Full Text PDF

Craniosynostosis is rarely diagnosed in utero. Prenatal diagnosis has the potential to improve patient outcomes and streamline care, however, and is becoming more feasible as technology improves. The objective of this study is to examine existing literature on prenatal diagnosis of nonsyndromic craniosynostosis.

View Article and Find Full Text PDF

We report a 28-year-old G2P0 at 24 weeks 5 days who presented for evaluation secondary to suspected skeletal dysplasia in her fetus. Fetal ultrasound imaging demonstrated foreshortened long bones by 9-10 weeks, multiple bowing deformities and fractures, 11 foreshortened paired ribs with fractures, decreased skull mineralization, frontal bossing, enlarged cavum septum pellucidi, and severe fetal growth restriction (< 2%). Findings were concerning for life limiting condition with thoracic circumference < 2.

View Article and Find Full Text PDF

Automated craniofacial biometry with 3D T2w fetal MRI.

PLOS Digit Health

December 2024

Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.

Objectives: Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated label propagation pipeline using 3D motion- corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.

Methods: A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!