Mucus barriers accommodate trillions of microorganisms throughout the human body while preventing pathogenic colonization. In the oral cavity, saliva containing the mucins MUC5B and MUC7 forms a pellicle that coats the soft tissue and teeth to prevent infection by oral pathogens, such as Streptococcus mutans. Salivary mucin can interact directly with microorganisms through selective agglutinin activity and bacterial binding, but the extent and basis of the protective functions of saliva are not well understood. Here, using an ex vivo saliva model, we identify that MUC5B is an inhibitor of microbial virulence. Specifically, we find that natively purified MUC5B downregulates the expression of quorum-sensing pathways activated by the competence stimulating peptide and the sigX-inducing peptide. Furthermore, MUC5B prevents the acquisition of antimicrobial resistance through natural genetic transformation, a process that is activated through quorum sensing. Our data reveal that the effect of MUC5B is mediated by its associated O-linked glycans, which are potent suppressors of quorum sensing and genetic transformation, even when removed from the mucin backbone. Together, these results present mucin O-glycans as a host strategy for domesticating potentially pathogenic microorganisms without killing them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811953PMC
http://dx.doi.org/10.1038/s41564-021-00876-1DOI Listing

Publication Analysis

Top Keywords

genetic transformation
12
mucin o-glycans
8
quorum-sensing pathways
8
streptococcus mutans
8
quorum sensing
8
muc5b
5
mucin
4
o-glycans suppress
4
suppress quorum-sensing
4
pathways genetic
4

Similar Publications

Human pathogen Streptococcus pneumoniae forms multiple epigenetically and phenotypically distinct intra-populations by invertase PsrA-driven inversions of DNA methyltransferase hsdS genes in the colony opacity-determinant (cod) locus. As manifested by phase switch between opaque and transparent colonies, different genome methylation patterns or epigenomes confer pathogenesis-associated traits, but it is unknown how the pathogen controls the hsdS inversion orientations. Here, we report our finding of the SpxA1-TenA toxin-antitoxin (TA) system that regulates the orientations of hsdS inversions, and thereby bacterial epigenome and associated traits (e.

View Article and Find Full Text PDF

Overexpression Enhances Cadmium Tolerance in .

Environ Sci Technol

December 2024

Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China.

Glutathione S-transferase (GST) has been established to play an important role in regulating the responses of plants to stress, although its function and mechanisms of action in the cadmium (Cd)-tolerant remain unclear. In this study, we sought to identify a Cd-responsive gene from for functional analysis and mechanistic characterization. We accordingly identified a member of the gene family, , which plays a positive role in adaptation of to Cd.

View Article and Find Full Text PDF

To construct a recombinant strain expressing SpaA and CbpB of for oral administration, we constructed the recombinant plasmid pDG1730-CBJA by fusion PCR and seamless cloning. The plasmid was introduced into . KC strain by natural transformation, and the recombinant strain KC-- was screened out on the plate containing spectinomycin () and confirmed by PCR and starch degradation test.

View Article and Find Full Text PDF

Interplay between tobacco curly shoot virus vsiRNA24 and triosephosphate isomerase: implications for Nicotiana benthamiana viral defense.

New Phytol

December 2024

Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Virus-derived small interfering RNAs (vsiRNAs) play an important role in viral infection by regulating the expression of host genes. At present, research on the regulation of plant primary metabolic pathways by vsiRNAs is very limited. TvsiRNA24 derived from tobacco curly shoot virus (TbCSV) was amplified by reverse transcription polymerase chain reaction, and its target gene NbTPI (triosephosphate isomerase) was verified using reverse transcription quantitative polymerase chain reaction and GFP fluorescence observation.

View Article and Find Full Text PDF

Background: Chronic hepatitis B virus (HBV) infection is a common but underdiagnosed and undertreated health condition and is the leading cause of hepatocellular carcinoma (HCC) worldwide. HBV (rated a Grade 1 carcinogen by the International Agency for Research on Cancer) drives the transformation of hepatocytes in multiple ways by inducing viral DNA integrations, genetic dysregulation, chromosomal translocations, chronic inflammation, and oncogenic pathways facilitated by some HBV proteins. Importantly, these mechanisms are active throughout all phases of HBV infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!