Habitat-specific characteristics can affect signal transmission such that different habitats dictate the optimal signal. One way to examine how the environment influences signals is by comparing changes in signal effectiveness in different habitats. Examinations of signal effectiveness between different habitats has helped to explain signal divergence/convergence between populations and species using acoustic and colour signals. Although previous research has provided evidence for local adaptations and signal divergence in many species of lizards, comparative studies in movement-based signals are rare due to technical difficulties in quantifying movements in nature and ethical restrictions in translocating animals between habitats. We demonstrate herein that these issues can be addressed using 3D animations, and compared the relative performance of the displays of four Australian lizard species in the habitats of each species under varying environmental conditions. Our simulations show that habitats differentially affect signal performance, and an interaction between display and habitat structure. Interestingly, our results are consistent with the hypothesis that the signal adapted to the noisier environment does not show an advantage in signal effectiveness, but the noisy habitat was detrimental to the performance of all displays. Our study is one of the first studies for movement-based signals that directly compares signal performance in multiple habitats, and our approach has laid the foundation for future investigations in motion ecology that have been intractable to conventional research methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973430PMC
http://dx.doi.org/10.1038/s41598-021-85793-3DOI Listing

Publication Analysis

Top Keywords

signal effectiveness
16
signal
11
environmental conditions
8
affect signal
8
effectiveness habitats
8
studies movement-based
8
movement-based signals
8
performance displays
8
signal performance
8
habitats
7

Similar Publications

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

Background And Objectives: Patients with multiple sclerosis (MS) may demonstrate better disease control when treatment is initiated on high-efficacy disease-modifying therapies (DMTs) from onset. This subgroup analysis assessed the long-term efficacy and safety profile of the high-efficacy DMT ocrelizumab (OCR) as first-line therapy for early-stage relapsing MS (RMS).

Methods: Post hoc exploratory analyses of efficacy and safety were performed in a subgroup of treatment-naive patients with RMS who received ≥1 dose of OCR in the multicenter OPERA I/II (NCT01247324/NCT01412333) studies.

View Article and Find Full Text PDF

The evolution of radiation therapy in Uganda has been a journey marked by significant milestones and persistent challenges. Since the inception of radiotherapy services in 1988-1989, there has been a concerted effort to enhance cancer treatment services. The early years were characterized by foundational developments, such as the installation of the first teletherapy units, low-dose-rate brachytherapy units, and conventional simulators, and the recognition of radiation oncologists and medical physicist professionals laid the groundwork for radiotherapy treatment modalities.

View Article and Find Full Text PDF

Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.

View Article and Find Full Text PDF

Establishment and application of a zebrafish model of Werner syndrome identifies sapanisertib as a potential antiaging drug.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.

Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!