A new and more aggressive strain of coronavirus, known as SARS-CoV-2, which is highly contagious, has rapidly spread across the planet within a short period of time. Due to its high transmission rate and the significant time-space between infection and manifestation of symptoms, the WHO recently declared this a pandemic. Because of the exponentially growing number of new cases of both infections and deaths, development of new therapeutic options to help fight this pandemic is urgently needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline N-oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods as a well-reasoned strategy will aid in elucidating the fundamental physicochemical properties and molecular functions of a diversity of compounds, directly accelerating the process of discovering new drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline N-oxide, which are biologically active compounds and may be low-cost alternatives for the treatment of infections induced by SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973710PMC
http://dx.doi.org/10.1038/s41598-021-85280-9DOI Listing

Publication Analysis

Top Keywords

nitro derivatives
12
derivatives quinoline
12
quinoline quinoline
12
quinoline n-oxide
12
quinoline
6
computational evidence
4
evidence nitro
4
n-oxide low-cost
4
low-cost alternative
4
alternative treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!