Learning dynamic Bayesian networks from time-dependent and time-independent data: Unraveling disease progression in Amyotrophic Lateral Sclerosis.

J Biomed Inform

Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Lisbon ELLIS Unit (Lisbon Unit for Learning and Intelligent Systems), Portugal. Electronic address:

Published: May 2021

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing patients to quickly lose motor neurons. The disease is characterized by a fast functional impairment and ventilatory decline, leading most patients to die from respiratory failure. To estimate when patients should get ventilatory support, it is helpful to adequately profile the disease progression. For this purpose, we use dynamic Bayesian networks (DBNs), a machine learning model, that graphically represents the conditional dependencies among variables. However, the standard DBN framework only includes dynamic (time-dependent) variables, while most ALS datasets have dynamic and static (time-independent) observations. Therefore, we propose the sdtDBN framework, which learns optimal DBNs with static and dynamic variables. Besides learning DBNs from data, with polynomial-time complexity in the number of variables, the proposed framework enables the user to insert prior knowledge and to make inference in the learned DBNs. We use sdtDBNs to study the progression of 1214 patients from a Portuguese ALS dataset. First, we predict the values of every functional indicator in the patients' consultations, achieving results competitive with state-of-the-art studies. Then, we determine the influence of each variable in patients' decline before and after getting ventilatory support. This insightful information can lead clinicians to pay particular attention to specific variables when evaluating the patients, thus improving prognosis. The case study with ALS shows that sdtDBNs are a promising predictive and descriptive tool, which can also be applied to assess the progression of other diseases, given time-dependent and time-independent clinical observations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2021.103730DOI Listing

Publication Analysis

Top Keywords

dynamic bayesian
8
bayesian networks
8
time-dependent time-independent
8
disease progression
8
amyotrophic lateral
8
lateral sclerosis
8
ventilatory support
8
patients
5
variables
5
learning dynamic
4

Similar Publications

Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.

View Article and Find Full Text PDF

Integrated analysis of marked and count data to characterize fine-scale stream fish movement.

Oecologia

January 2025

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.

Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.

View Article and Find Full Text PDF

In Guangxi, the number of newly diagnosed HIV-1 infections among students is continuously increasing, highlighting the need for a detailed understanding of local transmission dynamics, particularly focusing on key drivers of transmission. We recruited individuals newly diagnosed with HIV-1 in Nanning, Guangxi, and amplified and sequenced the HIV-1 pol gene to construct a molecular network. Bayesian phylogenetic analysis was utilized to identify migration events, and multivariable logistic regression was employed to analyze factors influencing clustering and high linkage.

View Article and Find Full Text PDF

The exponential random graph model (ERGM) is a popular model for social networks, which is known to have an intractable likelihood function. Sampling from the posterior for such a model is a long-standing problem in statistical research. We analyze the performance of the stochastic gradient Langevin dynamics (SGLD) algorithm (also known as noisy Longevin Monte Carlo) in tackling this problem, where the stochastic gradient is calculated via running a short Markov chain (the so-called inner Markov chain in this paper) at each iteration.

View Article and Find Full Text PDF

Emotional experiences involve dynamic multisensory perception, yet most EEG research uses unimodal stimuli such as naturalistic scene photographs. Recent research suggests that realistic emotional videos reliably reduce the amplitude of a steady-state visual evoked potential (ssVEP) elicited by a flickering border. Here, we examine the extent to which this video-ssVEP measure compares with the well-established Late Positive Potential (LPP) that is reliably larger for emotional relative to neutral scenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!