Oxidative Stress and Hypoxia Modify Mitochondrial Homeostasis During Glaucoma.

Antioxid Redox Signal

Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA.

Published: December 2021

Cellular response to hypoxia can include transition from respiration to glycolysis upregulation of glycolytic enzymes and transporters, as well as mitophagy induction to eliminate surplus mitochondria. Our purpose was to evaluate the impact of hypoxia-inducible factor-1α (HIF-1α) stabilization on mitochondrial homeostasis and oxidative stress in a chronic model of glaucoma. Retina and optic nerve (ON) were evaluated from young and aged DBA/2J (D2) glaucoma model mice and the control strain, the DBA/2-. Hypoxic retinal ganglion cells (RGCs) were observed in young and aged D2 retina, with a significant increase in HIF-1α protein in the aged D2 retina. Reactive oxygen species observed in young D2 retina and ON were followed by significant decreases in antioxidant capacity in aged D2 retina and ON. HIF-1α targets such as neuron-specific glucose transporter-3 and lactate dehydrogenase were decreased or unchanged, respectively, in aged D2 retina despite an increased hypoxia response in RGCs. Mitochondrial mass was decreased in aged D2 retina concomitant with decreased mitochondrially encoded electron transport chain transcripts despite a stable nuclear-encoded TFAM (mitochondrial transcription factor), suggesting a breakdown in the nuclear-mitochondrial communication. Decreased mitophagy-associated proteins p62 and Rheb were observed in aged D2 retina, although p62 was significantly increased in the aged D2 ON. The increased reactive oxygen species concomitant with HIF-1α upregulation despite reduced glucose transporters, mis-match of nuclear- and mitochondrial-encoded transcripts, and signs of reduced mitophagy suggest that retinas from D2 mice with chronic intraocular pressure elevation transition to pseudohypoxia without consistent metabolic reprogramming before significant RGC loss. 35, 1341-1357.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817702PMC
http://dx.doi.org/10.1089/ars.2020.8180DOI Listing

Publication Analysis

Top Keywords

aged retina
24
oxidative stress
8
mitochondrial homeostasis
8
retina
8
aged
8
young aged
8
observed young
8
reactive oxygen
8
oxygen species
8
stress hypoxia
4

Similar Publications

Background: An idiopathic macular hole (IMH) is a foveal opening in the neurosensory retina caused by perifoveal vitreomacular traction and detachment. IMH prevalence varies considerably across populations, highlighting a need for further investigation, especially in underrepresented groups such as Hispanics.

Methods: This retrospective, descriptive, cross-sectional study analyzed IMH prevalence in a Hispanic population over four years.

View Article and Find Full Text PDF

Obesity and retinal microvasculature dysfunction are linked and impact visual acuity. The aim of this study was to determine the relationship between the HOMA-IR score and the presence of vascular dysfunction (capillary perfusion and flux index) of the optic nerve head (ONH) of the retina in obese patients and to determine its diagnostic performance to predict vascular dysfunction. A case-control study was conducted in 2022 involving individuals from obese and non-obese groups.

View Article and Find Full Text PDF

Photoreceptor metabolic window unveils eye-body interactions.

Nat Commun

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China.

Photoreceptors are specialized neurons at the core of the retina's functionality, with optical accessibility and exceptional sensitivity to systemic metabolic stresses. Here we show the ability of risk-free, in vivo photoreceptor assessment as a window into systemic health and identify shared metabolic underpinnings of photoreceptor degeneration and multisystem health outcomes. A thinner photoreceptor layer thickness is significantly associated with an increased risk of future mortality and 13 multisystem diseases, while systematic analyses of circulating metabolomics enable the identification of 109 photoreceptor-related metabolites, which in turn elevate or reduce the risk of these health outcomes.

View Article and Find Full Text PDF

Anatomy-driven segmentation of parafoveal optical coherence tomography (OCT) measures may improve associations with clinical outcomes in multiple sclerosis.

J Neurol

January 2025

Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.

Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.

Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.

Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!