The ability to prevent or minimize the accumulation of unwanted biological materials on implantable medical devices is important in maintaining the long-term function of implants. To address this issue, there has been a focus on materials, both biological and synthetic, that have the potential to prevent device fouling. In this review, we introduce a glycoprotein called lubricin and report on its emergence as an effective antifouling coating material. We outline the versatility of lubricin coatings on different surfaces, describe the physical properties of its monolayer structures, and highlight its antifouling properties in improving implant compatibility as well as its use in treatment of ocular diseases and arthritis. This review further describes synthetic polymers mimicking the lubricin structure and function. We also discuss the potential future use of lubricin and its synthetic mimetics as antiadhesive biomaterials for therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1116/6.0000779 | DOI Listing |
Biosensors (Basel)
December 2024
Department of Biochemistry and Chemistry, La Trobe University, Bundoora, VIC 3086, Australia.
Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.
View Article and Find Full Text PDFArthritis Res Ther
December 2024
Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA.
Background: Synovial macrophages (SMs) are important effectors of joint health and disease. A novel Cx3CR1 + TREM2 + SM population expressing the tight junction protein claudin-5, was recently discovered in synovial lining. Ablation of these SMs was associated with onset of arthritis.
View Article and Find Full Text PDFAnn Pediatr Cardiol
October 2024
Department of Paediatric Cardiology, Sri Padmavathi Children Heart Centre, Tirupati, Andhra Pradesh, India.
An autosomal recessively inherited noninflammatory arthropathy known as camptodactyly, arthropathy, coxa vara, and pericarditis (CACP) syndrome was discovered in 1999. It is distinguished by synoviocyte hyperplasia and subcapsular fibrosis of the synovial capsule, which results in a shortage of lubricin production. The resulting lack of joint lubrication induces increased mechanical stress, causing progressive deformities that become evident with weight-bearing and heightened joint activity.
View Article and Find Full Text PDFJ Orthop Res
November 2024
Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
The low friction nature of articular cartilage has been attributed to the synergistic interaction between lubricin and hyaluronic acid in the synovial fluid (SF). Lubricin is a mucinous glycoprotein that lowers the boundary mode coefficient of friction of articular cartilage in a dose-dependent manner. While there have been multiple attempts to produce recombinant lubricin and lubricin mimetic cartilage lubricants over the last two decades, these materials have not found clinical use due to challenges associated with large scale production, manufacturing, and purification.
View Article and Find Full Text PDFACS Biomater Sci Eng
November 2024
Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States.
Progressive cartilage degradation, synovial inflammation, and joint lubrication dysfunction are key markers of osteoarthritis. The composition of synovial fluid (SF) is altered in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. Lubricin's distinct bottlebrush mucin domain has been speculated to contribute to its lubricating ability, but the relationship between its structure and mechanical function in SF is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!