Rhizosphere microbiota play a pivotal role in promoting plant growth and defending against pathogens, but their responses to abiotic environmental stress remain largely elusive. Here, we investigated the influences of low-N stress on rhizosphere bacteria of six sorghum cultivars in a glasshouse experiment. The alpha diversity of bacteria (as revealed by Shannon diversity and Chao1 richness indices) was remarkably lower in rhizosphere soils than in bulk soils, and was significantly higher under low-N stress than under N addition. Principal coordinates analysis revealed that the bacterial community compositions in rhizosphere soils were clearly separated from bulk soils, and the rhizosphere soils under low-N stress or with N fertilization were clearly separated, indicating that both rhizosphere effects and N fertilization impacted the rhizosphere bacterial community. Notably, the relative abundances of beneficial bacteria such as Bacillaceae and Streptomycetaceae significantly increased in rhizosphere soils under low-N stress, which had significantly positive correlations with the sorghum N uptake. The relative abundance of Nitrosomonadaceae in rhizosphere soils was significantly lower than that in bulk soils, while the relative abundance of Rhizobiaceae showed an opposite pattern. Taken together, our results suggested that sorghum rhizosphere effects can reduce soil bacterial diversity possibly through recruiting specific bacterial species under low N stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144742DOI Listing

Publication Analysis

Top Keywords

rhizosphere soils
20
low-n stress
16
rhizosphere effects
12
bulk soils
12
rhizosphere
10
sorghum rhizosphere
8
soil bacterial
8
bacterial diversity
8
diversity recruiting
8
recruiting specific
8

Similar Publications

As farming practices evolve and climate conditions shift, achieving sustainable food production for a growing global population requires innovative strategies to optimize environmentally friendly practices and minimize ecological impacts. Agroecosystems, which integrate agricultural practices with the surrounding environment, play a vital role in maintaining ecological balance and ensuring food security. Rhizosphere management has emerged as a pivotal approach to enhancing crop yields, reducing reliance on synthetic fertilizers, and supporting sustainable agriculture.

View Article and Find Full Text PDF

Wheat () is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and subsequent release of these metabolites by commercial wheat cultivars, however, has not yet been targeted by focussed breeding programmes seeking to develop more competitive crops.

View Article and Find Full Text PDF

is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.

View Article and Find Full Text PDF

Pulling nutrients from Mo-polluted soil by arbuscular mycorrhizal fungi extraradical mycelia is quenching thirsty with poison.

Plant Physiol Biochem

January 2025

College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China.

As an extension of plant root system, arbuscular mycorrhizal fungi (AMF) extraradical mycelium (ERM) can break the limitation of rhizosphere and play an important role in plant nutrient acquisition. However, it remains unclear whether ERM is smart enough to pick out nutrients while avoiding poison, or is unable to pick out nutrients and have to absorb poisons together. Therefore, the present study employed a compartment device to separate the mycelia from roots, aiming to explore the nutrient absorption pathways of mycelia in molybdenum (Mo) pollution soil after inoculation with AMF in maize and vetch plants.

View Article and Find Full Text PDF

Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!