National Capital Region (NCR) encompassing New Delhi is one of the most polluted urban metropolitan areas in the world. Real-time chemical characterization of fine particulate matter (PM and PM) was carried out using three aerosol mass spectrometers, two aethalometers, and one single particle soot photometer (SP2) at two sites in Delhi (urban) and one site located ~40 km downwind of Delhi, during January-March 2018. The campaign mean PM (NR-PM + BC) concentrations at the two urban sites were 153.8 ± 109.4 μg.m and 127.8 ± 83.2 μg.m, respectively, whereas PM (NR-PM + BC) was 72.3 ± 44.0 μg.m at the downwind site. PM particles were composed mostly of organics (43-44)% followed by chloride (14-17)%, ammonium (9-11)%, nitrate (9%), sulfate (8-10)%, and black carbon (11-16)%, whereas PM particles were composed of 47% organics, 13% sulfate as well as ammonium, 11% nitrate as well as chloride, and 5% black carbon. Organic aerosol (OA) source apportionment was done using positive matrix factorization (PMF), solved using an advanced multi-linear engine (ME-2) model. Highly mass-resolved OA mass spectra at one urban and downwind site were factorized into three primary organic aerosol (POA) factors including one traffic-related and two solid-fuel combustion (SFC), and three oxidized OA (OOA) factors. Whereas unit mass resolution OA at the other urban site was factorized into two POA factors related to traffic and SFC, and one OOA factor. OOA constituted a majority of the total OA mass (45-55)% with maximum contribution during afternoon hours ~(70-80)%. Significant differences in the absolute OOA concentration between the two urban sites indicated the influence of local emissions on the oxidized OA formation. Similar PM chemical composition, diurnal and temporal variations at the three sites suggest similar type of sources affecting the particulate pollution in Delhi and adjoining cities, but variability in mass concentration suggest more local influence than regional.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145324DOI Listing

Publication Analysis

Top Keywords

source apportionment
8
fine particulate
8
particulate matter
8
urban site
8
urban sites
8
downwind site
8
particles composed
8
black carbon
8
organic aerosol
8
site factorized
8

Similar Publications

The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.

View Article and Find Full Text PDF

Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.

View Article and Find Full Text PDF

Component analysis and source identification of atmospheric aerosols at the neighborhood scale in a coastal industrial city in China.

Environ Pollut

December 2024

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6∼202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%∼60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).

View Article and Find Full Text PDF

Mass load and source apportionment of pharmaceutical and personal care product in the Wuhan section of the Yangtze River, China.

Sci Total Environ

December 2024

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address:

Given the limited research on pharmaceuticals and personal care products (PPCPs) in the Wuhan section of the Yangtze River (WYR), this work investigated the distribution of 15 PPCPs in this region, assessed their ecological risks and annual fluxes. It was further to analyze the levels of indicator sucralose in the WYR to understand the sources of PPCPs. The results showed the average concentrations were 143.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have been detected in lake ecosystems globally, even in remote areas at high altitudes. Compared to plain lakes with short water change cycles and significant human influence, plateau lakes are primarily tectonic closed or semi-closed lakes with steep terrain. Their long water change cycles lead to an obvious cumulative effect on pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!