In recent years, the frequent occurrence of haze events in the Indo-Gangetic Plain (IGP) during crop residue burning period has caused a serious reduction in atmospheric visibility and deteriorated air quality. The present study is carried out to investigate the haze event observed in IGP in Nov 2017 using ground-based observations, satellite data and synoptic meteorology to understand the possible factors responsible for haze formation. PM (particulate matter with aerodynamic diameter ≤ 2.5 μm) concentrations and Air Quality Index (AQI) at two sites (Agra and Delhi) situated in the central Indo-Gangetic Plain (CIGP) showed a sudden increase in PM concentrations and deteriorated air quality during 7-14 Nov. To monitor the variation of particulate matter (PM) in IGP, PM and PM (particulate matter with aerodynamic diameter ≤ 10 μm) concentrations were monitored at 22 stations in 12 cities of IGP during 1-15 Nov which also showed an increase in PM concentrations during haze event (7-14 Nov). Crop residue burning activities in north-west Indo-Gangetic Plain (NW-IGP) were observed during haze event. Synoptic weather conditions of IGP identified using geopotential height and wind at 700 hPa showed high-pressure systems and low winds in IGP favoring stagnant conditions during haze event. A detailed analysis of the variation of pollutants and meteorology was carried out at Agra. Ozone (O), carbon monoxide (CO), sulphur dioxide (SO) and nitrogen oxides (NO) showed higher concentrations during haze event along with lower temperature, low wind speed and high relative humidity. Aerosol ionic composition showed a higher contribution (~84%) of Cl, NO, SO and NH to total soluble ions suggesting secondary aerosol formation during haze event.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145479DOI Listing

Publication Analysis

Top Keywords

haze event
24
indo-gangetic plain
16
crop residue
12
residue burning
12
air quality
12
particulate matter
12
haze events
8
events indo-gangetic
8
synoptic meteorology
8
haze
8

Similar Publications

Cannabis has been consumed for centuries, but global regulatory changes over the past three decades have increased the availability and consumption of cannabis. Cannabinoids are touted to have therapeutic potential for many diseases and could be a replacement for opioids for analgesia and sedation. However, cannabinoids can cause substantial adverse cardiovascular events that would mitigate any potential benefit.

View Article and Find Full Text PDF

Background: This study aimed to identify the clinical characteristics of cases that is related to the response rate of adalimumab (ADA) treatment.

Methods: A retrospective review of medical records was conducted for pediatric patients with non-infectious uveitis undergoing ADA treatment for a minimum of six months. The patients were stratified into two groups: those with anterior segment inflammation (ASI+) and those without anterior segment inflammation (ASI-).

View Article and Find Full Text PDF

Background: Phage therapy offers a promising alternative for treating serious infections, including diabetic foot ulcers (DFUs), through the lytic action of phages. This randomized double-blind study was conducted to evaluate the safety and tolerability of the TP-102 bacteriophage cocktail in patients with DFUs non-infected and infected with Staphylococcus aureus, Pseudomonas aeruginosa, and/or Acinetobacter baumannii.

Methods: Nineteen participants with DFUs were randomized after susceptibility testing.

View Article and Find Full Text PDF

A forecasting tool for optimized emission control strategies to achieve short-term air quality attainment.

J Environ Manage

January 2025

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.

Optimizing an emergency air pollution control strategy for haze events presents a significant challenge due to the extensive computational demands required to quantify the complex nonlinearity associated with controls on diverse air pollutants and regional sources. In this study, we developed a forecasting tool for emergency air pollution control strategies based on a predictive response surface model that quantifies PM responses to emission changes from different pollutants and regions. This tool is equipped to assess the effectiveness of emergency control measures corresponding to various air pollution alerts and to formulate an optimized control strategy aimed at specific PM targets.

View Article and Find Full Text PDF

Aerosol light absorption has been widely considered as a contributing factor to the worsening of particulate pollution in large urban areas, primarily through its role in stabilizing the planetary boundary layer (PBL). Here, we report that absorption-dominated aerosol-radiation interaction can decrease near-surface fine particulate matter concentrations ([PM]) at a large-scale during wintertime haze events. A "warm bubble" effect by the significant heating rate of absorbing aerosols above the PBL top generates a secondary circulation, enhancing the upward motion (downward motion) and the convergence (divergence) in polluted (relatively clean) areas, with a net effect of lowering near-surface [PM].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!